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Liu, Robert C., Svilen Tzonev, Sergei Rebrik, and Kenneth D.
Miller. Variability and information in a neural code of the cat lateral
geniculate nucleus.J Neurophysiol86: 2789–2806, 2001. A central
theme in neural coding concerns the role of response variability and
noise in determining the information transmission of neurons. This
issue was investigated in single cells of the lateral geniculate nucleus
of barbiturate-anesthetized cats by quantifying the degree of precision
in and the information transmission properties of individual spike
train responses to full field, binary (bright or dark), flashing stimuli.
We found that neuronal responses could be highly reproducible in
their spike timing (;1–2 ms standard deviation) and spike count
(;0.3 ratio of variance/mean, compared with 1.0 expected for a
Poisson process). This degree of precision only became apparent
when an adequate length of the stimulus sequence was specified to
determine the neural response, emphasizing that the variables relevant
to a cell’s response must be controlled to observe the cell’s intrinsic
response precision. Responses could carry as much as 3.5 bits/spike of
information about the stimulus, a rate that was within a factor of two
of the limit the spike train could transmit. Moreover, there appeared to
be little sign of redundancy in coding: on average, longer response
sequences carried at least as much information about the stimulus as
would be obtained by adding together the information carried by
shorter response sequences considered independently. There also was
no direct evidence found for synergy between response sequences.
These results could largely, but not entirely, be explained by a simple
model of the response in which one filters the stimulus by the cell’s
impulse response kernel, thresholds the result at a fairly high level,
and incorporates a postspike refractory period.

I N T R O D U C T I O N

To understand the coding of information by neurons, it is
important to quantify the variability in their responses. When
this variability is driven by changes in the stimulus, the neu-
rons can use this to distinguish between stimuli. On the other
hand, when this variability occurs in repeated responses to the
same stimulus, it acts as noise that reduces the neurons’ po-
tential capacity to code information.

The study of neuronal variability has recently seen a rebirth
of interest in association with the renewed use of information-
theoretic techniques for analyzing neural coding (Bair 1999;
Borst and Theunissen 1999; Buracas and Albright 1999; de
Ruyter van Steveninck et al. 1997; Meister and Berry 1999;
Rieke et al. 1997; Victor 1999). In the visual system, the

precision of spike times and counts has been investigated in
several neural areas, although only a few have looked at the
lateral geniculate nucleus (LGN) (Guido and Sherman 1998;
Hartveit and Heggelund 1994; Kara et al. 2000; Keat et al.
2001; Reich et al. 1997; Reinagel and Reid 2000; Sestokas and
Lehmkuhle 1988). In this paper, we further explore the degree
of precision found in LGN neurons of barbiturate-anesthetized
cat by examining both spike count and timing measures. We go
on to quantify the amount of information transmitted by neu-
rons about the stimulus and to determine the degree to which
models of response based on linear integration of inputs can
account for the observed precision.

A unique feature of the present approach is that we closely
examined the dependence of neuronal variability on the degree
of specification of the stimulus. To do this, we employed a
pseudorandom binary stimulus known as an M-sequence (Sut-
ter 1992). We focused only on characterizing the neurons’
response to temporally varying stimuli by showing full-field
bright and dark frames, ignoring the center-surround spatial
structure of LGN neurons. M-sequences provide a statistically
efficient and convenient method for analyzing responses be-
cause they have the nice property that every sequence of bright
and dark frames of a given length (up to some limit) is repeated
the same number of times somewhere throughout the sequence
(seeMETHODS). This allowed us to simultaneously examine the
responses—both the mean response and the variability in the
response—toevery sequence of a given length, giving us a
detailed characterization of the neural code for such sequences.
By varying this length, we examined how much of the stimulus
had to be specified to maximize the precision of a neuron’s
response: e.g., if the neuron’s response was influenced by the
last 10 frames and only 5 frames were specified, then the
response would be averaged over the unspecified frames, caus-
ing the neuron’s responses to appear more variable than they
would be if the stimulus were fully specified. The variability
remaining when the stimulus was fully specified reflected the
neuron’s intrinsic response variability.

It is common to characterize a cell’s response by its linear
temporal kernel, which—as computed from an M-sequence
stimulus and neglecting normalization (seeMETHODS)—is the
difference between its mean response to a single bright frame
and its mean response to a single dark frame. We found that
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average responses to a single bright or dark frame within a
sequence showed Poisson-like spike count variability and tem-
poral dispersion over tens of milliseconds, and the kernel was
correspondingly temporally broad. But by specifying more of
the stimulus—e.g., specifying eight consecutive frames—the
response could become far more precise, with sub-Poisson
spike count variability and temporal precision of 1–2 ms. The
information conveyed by the neuron correspondingly in-
creased, containing as much as 3.5 bits/spike about longer
stimulus sequences. We found that this information depended
on the specification of spike times down to 1-ms resolution and
that the information in consecutive spikes showed little redun-
dancy or synergy. Finally, we determined that the precision
obtained when multiple frames were specified could be largely,
but not entirely, explained if the spike rate arose from a
filtering of the stimulus by the cell’s temporal kernel followed
by thresholding, along with imposition of a postspike refrac-
tory period.

Some of this work was previously presented in abstract form
(Liu et al. 2000; Tzonev et al. 1997).

M E T H O D S

Experiments

We performed experiments on adult cats under a protocol approved
by the University of California, San Francisco Committee on Animal
Research. Cats were initially anesthetized with isoflurane (1–5%), and
placed on a feedback-controlled heating pad to maintain body tem-
perature at 37.5–38°C. We established an intravenous line and there-
after maintained anesthesia via thiopental sodium or pentobarbital
sodium (the latter was given once anesthesia was stable). The heart
rate, respiratory rate, core temperature, O2 saturation, expiratory CO2,
and lung pressure were all continually monitored. After performing a
tracheotomy, the animal was respirated with nitrous oxide in a 1:1
ratio with oxygen. We performed a craniotomy, and then paralyzed
the animal by infusing gallamine (10 mgz kg21 z h21 in lactated
dextrose Ringers). The electroencephalogram (EEG) was subse-
quently monitored continuously. We reflected the optic disk onto a
white background using a fiber optic light source, and inserted contact
lenses to focus the eyes at a distance of 35–40 cm.

We recorded extracellularly using tetrodes (Gray et al. 1995) ad-
vanced through a guide tube inserted to within a few millimeters of
the LGN. The LGN was recognized by the small (relative to surround-
ing structures) and monocular visual receptive fields, and by the match
of topography across repeated penetrations to published accounts
(Sanderson 1971). The electrodes were constructed from 13-mm-diam
nickel chromium insulated wire (;20 mm including the insulation).
The tips were beveled and gold-plated, and the typical impedance was
in the range of 0.8–1.5 MV. Tetrode signals were amplified and then
digitized at 20 or 30 kHz with 12-bit resolution. The digitized data
were continuously streamed to the disk. To separate signals from
different neurons, we sorted based on the spike amplitudes measured
at the four tetrode wires. Clustering was done manually using different
two-dimensional projections of the four-dimensional space.

Stimulus

For visual stimulation, sequences of full-field bright and dark
frames were presented on a computer monitor at the rate of 120 Hz,
yielding a frame duration oftf ' 8.3 ms. Each frame varied randomly
between bright or dark, with a photopic mean luminance; contrast
[measured as (L 2 D)/(L 1 D) whereL andD were the luminances
of bright and dark frames, respectively] for each full sequence was
chosen from 6, 14, 20, 40, or 80%.

We generated random frames using a binary M-sequence, which is
essentially a stream of pseudorandom bits having some special prop-
erties (see following text). A bit value of 1 corresponded to a bright
frame, and 0 corresponded to a dark frame.

An M-sequence of ordern consists of 2n 2 1 bits. The full sequence
can be viewed as a collage of overlappingk-bit sequences,k # n,
drawn from the list of all possible binary combinations ofk bits. For
example, fork 5 2, the possible binary combinations are: (0) 00, (1)
01, (2) 10, and (3) 11. Thus a portion of the full sequence consisting
of the bits 0110100 can be decomposed as the overlapping combina-
tion of the sequences (1), (3), (2), (1), (2), (0). The same decompo-
sition procedure can be applied for anyk. The M-sequence has the
convenient property that all subsequences of lengthk # n randomly
appear within the full sequence the same number of times, namely
2n2k occurrences (except that the all-zero sequence of lengthk ap-
pears 2n2k 2 1 times). Because of this statistical regularity of the M-
sequence, it is an excellent tool for the investigation of a cell’s neural
code.

Analysis

Cells were selected for analysis based on the following criteria. To
ensure single cell isolation, we chose only cells with clearly isolated
clusters in the various two-dimensional projections of the four-elec-
trode amplitude space; clusters with clipped responses due to ampli-
fier saturation were avoided. To achieve reasonable estimates of the
information rates,$1,000 spikes were required during the whole
stimulus. Finally, only cells withON or OFF linear temporal kernels
(see following text) were studied, since this formed the basis for the
definition of response events. In total, 12 cells (4ON, 8 OFF) in one cat
were studied at five contrast levels—80% (9 cells), 40% (6 cells),
20% (3 cells), 14% (1 cell), and 6% (2 cells)—yielding a total of 21
trials.

Response events and precision analysis

To study the precision of spikes, we attempted to classify each
individual spike as part of a spike event evoked in response to a
specific sequence ofk frames. This was done by applying the follow-
ing algorithm, described here for anOFF cell. We determined the
average stimulus before a spike, and defined the cell’s mean condi-
tional latency (conditioned on a spike) as the time to the zero-crossing
between peak and trough in the spike-triggered-average stimulus
(illustrated in Fig. 1). Then, as shown in Fig. 2, for each spike in the
train, we looked back in time from the spike by the mean conditional
latency and found the closestOFF transition (bright frame followed by
dark frame) within a window of61.5 frames; the spike was assigned
to that transition. If there was no such transition, the spike was
unclassified. We characterized sequences by their lengthk and the
location t of the transition within the sequence (e.g.,k 5 8, t 5 3
labeled an 8-frame sequence with a transition at the onset of the 3rd
frame—that is, between the 4th and 3rd frames, where the 1st frame
was the latest in time). For a given choice ofk andt, a given transition
was uniquely associated with a surrounding sequence, and the spike
was assigned to that sequence. All spikes associated with the same
sequence were labeled as part of the same event. The percentage of
total spikes that were unclassified served as a measure of the level of
“spontaneous” activity that was not driven by transitions.

Once the events were identified for a given choice ofk and t, the
probability that a specific sequence produced an event was computed
by dividing the number of times some spike response ($1 spike) was
obtained for that sequence, by the total number of presentations of that
sequence (i.e., 23 2142k times). This quantity was called the event
probability.

We assessed the timing precision of the first spike in an event for
each sequence consisting of a specified number of frames,k, with
transition locationt. A distribution for the times to the first spike in an
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event (of 1 or more spikes) was obtained from the numerous presen-
tations of a particulark-frame sequence. A jackknife estimate of the
standard deviation of this first-spike time was used as the index of the
timing precision (Thomson and Chave 1991), and the error was taken
as the square root of its variance. We approximated the overall
first-spike timing jitter for a givenk and t by the median standard
deviation across allk-frame sequences with transition locationt. The
timing jitter was then studied as a function ofk and t.

To determine whether the timing jitter was correlated with the event
probability, we computed the Spearman rank-order correlation (Press
et al. 1992, p. 639–642) for eight-frame sequences that hadt 5 3, the
transition position that generally resulted in the smallest timing jitter.
In several cases, there were sequences with very small event proba-
bilities and hence very few event responses from which to estimate the
timing jitter. This could result in particularly large or particularly
small jitters. To test whether this may have biased our estimate of the
correlation, we calculated the Spearman rank-order correlation under
two conditions: using all sequences and using only those sequences
with event probabilities above a minimum probability. This minimum
probability was arbitrarily taken to be 1/=N, whereN is the number
of presentations per sequence (n 5 128 for 8-frame sequences).

We also assessed the spike count precision of the events for each
sequence of a specifiedk andt. In this case, we generated a histogram
of the number of spikes in the event responses for each sequence,
allowing for the possibility of no spikes. A jacknife estimate of the
variance of that distribution was used as the index of that sequence’s
count precision. The error was again taken as the square root of the
variance of this estimate. To summarize the results across all se-
quences of lengthk with a givent, the Fano factor (variance divided
by the mean) for each sequence was also estimated by jacknife. The
median spike count Fano factor was then used to show the dependence
of spike count precision onk for a givent.

Information analysis

The information in the spike train about the stimulus was quantified
using the “direct” method (de Ruyter van Steveninck et al. 1997;
Strong et al. 1998a,b). This method estimates the mutual information
between stimulus and response “directly” from the spike trains with-
out regard to the details of the stimulus/response relationship and with

very few assumptions about the coding strategy. This method relies on
the fact that the mutual information between the stimulus and re-
sponse can be written as the difference of two spike train entropies.
First, the maximum amount of information that a spike train response
5 can provide about the stimulus is just given by the entropy of the
spike train itself,H(5). This is estimated from the probability distri-
bution of spike responses over the course of the whole experiment
without specific knowledge of the stimulus. Second, the information
the spike train carries about the stimulus is reduced from this maxi-
mum by the degree to which there is variability or noise1 in the
repeated responses to an identical stimulus, as measured by the spike
train noise entropy,H(1). This is estimated from the probability
distribution of spike responses to multiple, identical presentations of
the same stimulus, averaged over stimuli.

With the M-sequence, responses to the repeated presentations of
eachk-frame stimulus sequence were easily obtained. For each oc-
currence of a specifick-frame sequence, the response beginning at a
delayt (ranging from 0 to 130 ms) relative to the onset of the initial
frame of the sequence was divided into bins of sizeDt (usually 1 ms)
containing the number of spikes in each bin. These bins were com-
bined to form spike “words” of lengthT 5 MDt, whereM was an
integer number of bins. For example, forM 5 3, the joining of three
bins containing 2, 0, and 1 spikes, respectively, would yield the word
201 (note that the absence of spikes in a bin can be informative, and
its contribution was included).

We then computed the entropies for each choice ofk, T,andDt by
building the probability distribution of these words—across the whole
experiment forHk,Dt,T(5) and across the multiple repeats of theith
k-frame stimulus sequence (i 5 1, . . . , 2k) at time-shift t for
Hi,t,k,Dt,T(1). Note that the location of a transition,t, within the
k-frame sequence was now irrelevant and not specified; instead all
k-frame sequences contributed equally to this analysis. BothT andDt
were varied to obtain estimates of the entropy on different time scales.
For a givenT and Dt, the average information about thek-frame
sequence that began at timet before a response word was then given
by Hk,Dt,T(5) 2 ^Hi,t,k,Dt,T(1)&i, where^H(1)&i was the average noise
entropy across allk-frame stimulus sequences (i.e., average overi).
We assigned the information aboutk-frame sequences, for the given
T andDt, as the maximum information acrosst (see following text).

First though, for each combination ofT, Dt, k, andt, we corrected
for finite-data errors. This was done by computing the mutual infor-
mation for different partitions of the data: the whole data set, and the
average over each half of the set, over each third, and each fourth.
This average information was then plotted as a function of the number
of partitionsN, and fit to the functional form,I 5 I0 1 I1/N 1 I2/N

2

(Strong et al. 1998b).I0 therefore represented the true information rate
extracted from the limit of infinite data for a givenT, Dt, k, and t.
Note, however, that when the amount of the data were too small, even

FIG. 2. Algorithm for assigning a spike to anOFF transition. For each spike
in the spike train, look back in time by the mean conditional latency,L, and
find the closestOFF transition within a61.5 frame window. In this case the
indicated spike is assigned to theOFF transition indicated by the arrow. If.1
OFF transition is present within the window, the one closest toL is taken. Note
that multiple spikes falling within aL 61.5 frame window of a transition can
be assigned to the same transition and thus be part of the same spike event.

FIG. 1. The spike-triggered-average stimulus and the temporal kernel for an
OFF cell. The vertical axis represents the stimulus luminance on a linear scale,
normalized and shifted so that11 represents the bright frame luminanceL, 21
represents the dark frame luminanceD, and 0 represents the mean luminance
(L 1 D)/2. —, the spike-triggered average; - - -, the temporal kernel, obtained
by normalizing (in the frequency domain) the spike-triggered average by the
stimulus spectrum, up to a cutoff of 90 Hz (seeMETHODS). The temporal kernel
represents the cell’s temporal receptive field: it is the linear filter that, when
applied to the stimulus, best predicts the cell’s response in the sense of least
mean-square error. Both functions show a strong bright-to-dark transition in
the stimulus;32 ms before the spike occurred. This was defined as the cell’s
mean conditional latency.
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this correction failed. Empirically, this occurred when the ratio ofI2
to I0 became large. We used a ratio of 23 1023 as the border between
sufficient and insufficient data and show results only for cases in
which data were sufficient by this criterion. In practice, the corrections
for finite data were typically tiny, and the point of this procedure was
primarily to screen out cases (e.g., too-largek or too-largeT) for
which data were insufficient.

Given the corrected information, we assigned the information about
k-frame sequences as follows. For the givenk, T, andDt, we deter-
mined thet that maximized the information. The information,I, was
then assigned to be the average information over the bins within64
ms around this maximum. (We chose this to correspond to about a
frame width, so that averaging smoothed out any frame-related arti-
facts.) The information rate of the spike train, in units of bits/time, was
I/(MDt). We converted this to units of bits/spikeIspby dividing by the
neuron’s average spike rate,r, assessed over the entire two-M-se-
quence stimulus:Isp 5 I/(rMDt).

This method worked well only for relatively short response words.
Long response words required long stimulus sequences to minimize
the randomizing effect of different stimulus contexts on early or late
portions of the response word. However, since each sequence repeated
2 3 2142k times, ask increased, our estimate of the entropies de-
graded due to sampling problems. Thus to consider very long response
words, we employed a different strategy: we estimated alower bound
on the information carried by the spike train about the stimulus by
applying the direct method to the two repeats of the full M-sequence.
Assuming that the only thing in common between the two presenta-
tions of the M-sequence was the stimulus itself and that therefore the
noise in the two cases were uncorrelated, the information that one
response51 carried about the second response52, IDt,T(51,52)
should be a lower bound to the information between either response5
and the stimulus6, IDt,T(6,5) (Strong et al. 1998b). We took each
response to be the spike train generated by each full M-sequence,
minus the first and last 200 ms. We then computed each spike train’s
entropy,HDt,T(5i), i 5 1, 2, for words of lengthT, and the joint
entropy, HDt,T(51,52), for the co-occurrence of words in the two
spike trains. These were computed from the probability distributions
for words by using overlapping intervals (incremented byDt, to
increase the effective number of samples). To correct for finite-data
errors, data size scaling was applied in this case directly to the entropy
estimations (rather than to the mutual information as in the data size
scaling described above); an example is shown in Fig. 3A. The mutual
information between the two responses was then

IDt,T~51,52! 5 HDt,T~51! 1 HDt,T~52! 2 HDt,T~51,52! (1)

In general, the dependence of the information on word lengthT for
a given bin sizeDt was small. Hence, to summarize the dependence
for a particular bin size, the infinite-word-length limit was taken by
obtaining a linear fit to the plots of the (infinite data limit) entropies
versus 1/T, and using they intercept as the (infinite word limit)
entropy rates in the calculation of the information rate. The fit was
performed only over the range of 1/T where sufficient data were
available to accurately estimate the entropy rates, as illustrated in Fig.
3B. In practice,T’s ranged from 8 to 48 ms. Finally, the information
per second from words of spikes was converted into the information
per spike by dividing by the mean spike rate across the whole
experiment.

Models

We constructed quasi-linear threshold models of driven LGN spiking
activity to investigate whether the observed precision could be explained
by simple mechanisms. All models convolved the full M-sequence stim-
ulus, binned at one-sixth the frame period, with the cell’s temporal kernel
to generate a firing function,f(t) (linear part). These responses were
thresholded and perhaps squared (nonlinear part) to generate firing rates

r(t), as follows. We definedr(t) 5 lu([ f(t) 2 u]1)p, where [x]1 5 x, x.
0; 5 0, otherwise;p 5 1 for a linear function andp 5 2 for a quadratic
function; andlu was chosen to make the mean ofr(t) equal to the
observed mean firing rate. The value of the thresholdu was fit as
described in the following text. Finally, spikes were generated as a
Poisson process from these rates, perhaps along with a refractory period,
as will be described in the following text.

The temporal kernel was determined as the spike-triggered-average
stimulus, divided by the autocorrelation (or in Fourier space, the
power spectrum) of the M-sequence stimulus (the power in the M-
sequence at frequencyf is proportional to [sin (f/rf )/f ]

2, whererf 5
120 Hz is the frame rate). This division yields the linear filter that,
applied to the stimulus, gives the best estimate of the response in the
sense of least mean-square error (Rieke et al. 1997). The spike-
triggered average and temporal kernel for one cell can be seen in Fig.
1. The division is done in Fourier space, where it simplifies to a
frequency-by-frequency division; otherwise it would involve multi-
plying one matrix by the inverse of another matrix. However, one
does not want to continue dividing up to arbitrarily high frequencies
where the power in the stimulus approaches zero, as this will just
amplify high-frequency noise. We chose to do the division up to some
cutoff frequency, and to set all power above that cutoff frequency to
zero. To choose a cutoff frequency, we tried cutoffs from 75 to 100 Hz
in 5-Hz steps. For each cutoff, we applied the corresponding filter to
the M sequence to obtain the outputf(t), converted this to a rate
functionr(t) as described in the preceding text usingp 5 1, and chose
the thresholdu as that which minimized the mean-square error dif-
ference between the predicted Poisson rate function and the eight-
frame PSTH for the actual data. We then chose the cutoff frequency
that gave the least mean-square error; this best cutoff was 90 Hz. This
kernel was used subsequently in all models to draw actual spikes for
PSTH comparison (see following text).

The conversion fromr(t) to spikes was as follows. We interpolated
r(t) to achieve a temporal resolution of 1/60 of a frame (the spike-

FIG. 3. Estimate of the lower bound to the average information per spike
between the stimulus and words of spikes.A: the entropy of 48 ms words
within the spike train, binned in 1-ms bins, scaled with data fraction in a
controllable fashion.B: as the inverse length of the spike words decreased, the
amount of data (for fixed recording length) decreased, and the single spike train
and joint spike train entropy estimations began to fail for words longer than
;50 ms. An infinite word length extrapolation for the entropy rates was
obtained by fitting to the region where the data were sufficient.
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triggered average and temporal kernel had been computed in bins of
1/6 of a frame or;1.39 ms). For the simple Poisson case, spikes were
then generated in each time binDt with probabilityr(t)Dt, usingDt 5
139 ms. For the case of a Poisson process with a refractory period, a
free firing rate,q (Berry and Meister 1998), was generated assuming
a specific refractory period,m, by taking q(t) 5 r(t)/[1 2 r(t)m].
Spikes were then drawn as in the Poisson case but usingq(t) rather
than r(t). In the case of only an absolute refractory period, the
probability of a spike was set to zero form ms after each spike. We
also tried adding an exponential recovery after the absolute refractory
period, settingm 5 mabs1 mrel, wheremabswas the absolute refrac-
tory period andmrel was the exponential recovery of the probability
from zero up toq(t). This implementation for a relative refractory
period is reasonable whenmrel is smaller than the characteristic time
over which the firing rate remains relatively constant.

For each of the models, an optimal threshold and refractory peri-
od(s) (if applicable) were selected simultaneously to minimize the
mean-square error between the real data and the model of the segment
of the eight-frame PSTHs defined by the 18;1.39 ms bins before and
the 7 bins after the end of the eight-frame sequence. This was done by
trying every threshold from 1 to 5 in steps of 0.2, (if applicable)
absolute refractory periods from 1 to 4 ms and relative refractory
periods from 0.5 to 4 ms in steps of 0.5 ms for whichq(t) remained
positive, and then selecting the combination of threshold and refrac-
tory periods that gave the least mean-square error. These ranges seem
reasonable because in no case was the optimum parameter at an
extreme of the range explored for that parameter. The mean firing rate
over the whole stimulus in the model was typically matched to within
a few percent of the data’s mean.

R E S U L T S

Full-frame, binary, 14-bit M-sequence stimuli were pre-
sented at different contrast levels. In general, this stimulus
drove cells in the LGN well. Average spike rates across all
cells and stimulus conditions ranged from 4.6 to 25.3 Hz.
Neural responses were usually triggered by transitions from
either bright to dark frames (OFF cell), or vice versa (ON cell);
we referred to two-frame sequences of bright/dark or dark/
bright as anOFF or ON transition, respectively. Each cell’s
polarity was determined by reverse correlating the spike train
with the M-sequence stimulus. Figure 1 presents the spike-
triggered-average stimulus for one of our goodOFF cells (cell 4,
80% contrast) that had a strongly driven response producing

nearly 7,000 spikes. We use this cell to illustrate the main
results of our analysis. A spike at time 0 for this cell was
generally preceded by a transition from bright to dark;32 ms
earlier. This time delay was referred to as the cell’s mean
conditional latency. Figure 1 also illustrates the cell’s temporal
kernel (seeMETHODS), which represents the cell’s temporal
receptive field and has the same 32 ms mean conditional
latency; we will return to this later.

An initial 1,200 frames (10 s) from the beginning of the M-
sequence were presented to adapt the cells to the stimulus
ensemble before showing the M-sequences used in data anal-
ysis. After the conditioning, two repeats of the full M-sequence
were displayed without delay. A total of 23 2142k repetitions
of eachk-frame sequence (k # 14) occurred, e.g., 128 repeats
of each eight-frame sequence. Because of this convenient
property, it was natural to focus on responses to the set of
k-frame sequences for differentk.

Mean response: the PSTH matrix

The M-sequence stimulus presented frames of random stim-
uli in series rather than in isolation. To obtain an average
response to a specific stimulus sequence, we extracted the
individual spike responses to the multiple presentations of that
sequence in the full M sequence. Consider first the case of
one-frame stimuli. The average response to single bright or
dark frames of stimuli was generated in the form of a matrix of
PSTHs (Fig. 4). The shading in each 1-ms bin corresponds to
the total number of spikes from all presentations of this se-
quence at that time relative to the frame onset. Note that there
was a nonzero spike rate even at the time origin that was nearly
the same for both bright and dark frames. This reflects the fact
that at early times, the spikes were responses to earlier frames
over which we had averaged. The response to the particular
bright or dark frame was most clear at;32 ms as expected
from the cell’s mean conditional latency.

One advantage of visualizing a PSTH matrix is in the ability
to display the neuron’s average responses to stimuli more
complex than just a single frame, as shown in Fig. 5 for
two-frame sequences. This clearly shows that spikes tended to
be generated near the mean conditional latency in response to

FIG. 4. Peristimulus time histogram (PSTH) matrix ofcell 4’s spike responses to 1-frame sequences (i.e., to bright frames or
dark frames). Responses were histogrammed in 1-ms bins relative to time 0, defined as the time of onset of the stimulus frame, f1.
The stimulus itself is illustrated to the left of time 0 (gray represents a bright frame, black represents a dark frame). For 1-frame
sequences, virtually no spikes were observed in response to a bright frame (stimulus 1) at approximately a mean conditional latency
(32 ms) from its onset, while a large number of spikes were seen at a similar time after a dark stimulus (stimulus 0). Responses
to stimulus 0 at;32 ms largely represent responses to the 1/2 of cases in which the frame preceding it was a bright frame, creating
an OFF transition. Similarly, many spikes are seen in response to stimulus 1;1 frame later (;40 ms), representing responses to
the 1/2 of cases in which the bright frame was followed by a dark frame. Conventions for this and future PSTH-matrix figures: time
0 is defined relative to the sequence as shown at the top of the matrix: e.g., here time 0 is the time of onset of the single frame of
the stimulus, f1; for multiple-frame stimuli, the last frame in time would be f1, the preceding frame f2, etc., so that fk would be
thekth frame in reverse temporal order. The stimulus frame sequence is shown to the left of time 0 in temporal sequence from left
to right (left being earlier in time), with dark representing a dark frame and gray representing a bright frame.
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an OFF transition (stimulus 2), whereas spiking was clearly
suppressed near the mean conditional latency by anON transi-
tion (stimulus 1). Note that the response to a dark frame
(stimulus 0 in Fig. 4) was now broken down according to
whether the preceding frame was dark or bright (stimuli 0 and
2, respectively, in Fig. 5).

Figure 6 displays the PSTH matrix (with 1-ms time bins) for
the response to seven-frame sequences, sorted according to the
rightmost two frames, f1 and f2 (we usually numbered frames
in a k-frame sequence consecutively as fn, n 5 1, . . . ,k, with
f1 the latest in time and fk the earliest). This grouped together
all responses to sequences with anOFF transition in the most
recent two frames. As expected, a large vertical band of spikes
centered at;32 ms appeared in response to theOFF transition.
One striking feature was the slight slant in time of theOFF

response band near 32 ms. Qualitatively, for this cell, the time
to the first spike was correlated with the amount of time the
stimulus had been bright prior to the final transition to dark: the
longer this time, the earlier the occurrence of the first spike in
the response.

Moreover, the spikes in this band were noticeably isolated in
time on both sides by regions of virtually no spikes, suggesting
that there was a high degree of temporal precision in the
response when seven frames of the stimulus were specified. To
examine this, each spike should ideally be classified as part of
a response to a particular sequence. In the PSTH matrix
though, each spike occurred multiple times, each time associ-
ated with a different time frame and sequence. Hence, echoes
of the mainOFF response appeared in the other quadrants of the
PSTH matrix where anOFF transition occurred earlier in the
sequence.

Event classification

To classify a spike to a unique sequence, a search was
performed to find theOFF transition that was most likely to be
responsible for a given spike. All spikes classified to the same
transition were then grouped together as the spike “event” in
response to the sequence containing that transition (seeMETH-
ODS). In practice, this algorithm reproduced the event structure

FIG. 5. PSTH matrix ofcell 4’s spike re-
sponses to 2-frame sequences, histogrammed in
1-ms bins relative to the onset of frame f1. For
2-frame sequences, increased spiking was ob-
served around the mean conditional latency from
anOFFtransition (stimulus sequence 2). Note that
averaging the 2-frame responses over the left
frame (f2) for a given value of the right frame
(f1) yields the one-frame responses for f1: e.g.,
the average of responses to stimuli 1 and 3 gives
the response to stimulus 1 in Fig. 4.

FIG. 6. PSTH matrix ofcell 4’s spike responses to
7-frame sequences, histogrammed in 1-ms bins relative
to the onset of frame f1 (maximum spike rate of 535
Hz). The stimuli were sorted beginning with f2, f1, f3,
f4, . . . , f7, revealing an isolated band of spikes ap-
proximately a mean conditional latency (32 ms) from
anOFFtransition in f2–f1 (2nd quadrant). Similar bands
of spikes were observed at earlier times in response to
different stimulus sequences; these “spike echos” were
simply responses to earlierOFF transitions.
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quite well, as can be seen from the comparison of Figs. 7 and
8. These show the PSTH matrix and the extracted unique spike
events, respectively, for the 1/4 of eight-frame sequences hav-
ing an OFF transition in their final two frames. The band of
spikes near 32 ms was clearly reproduced in the spike events.
Virtually all spikes in the train were accounted for by this
technique; only 1.8% of the spikes were unclassified. (Note
that spikes placed at random would show 5/16, or 31%, un-
classified.)

In general, for the group data across all cells, 10 of 21 trials
had unclassified percentages,5%, while for the remaining 11
trials this was larger than 5%. Qualitatively, the unclassified
percentage was correlated with the degree to which spikes were
locked to the stimulus as evidenced by visual isolation of
spikes around the mean conditional latency in the PSTH ma-
trix. When the spikes around the mean conditional latency
could be visibly isolated (10 of 21 trials), the algorithm ap-
peared to yield fairly low unclassified percentages (9 of those
10 trials). The one exception was a 40% contrast trial for anON

cell in which the events in response to anON transition were
fairly well isolated yet the unclassified percentage was never-
theless high (26%), probably because spikes were also pro-
duced without a transition when the stimulus had been bright
for several frames. In cases when locking was evident but poor

(5 of 21 trials had bands of increased spiking, but these were
not well isolated) or when spiking was more indiscriminate (6
of 21 trials had poorly distinguishable bands), the unclassified
percentage tended to be larger (10 of these 11 trials had
unclassified percentages above 5%). The one exception was a
6% contrast trial for anOFF cell with a weak linear kernel–its
events were not well isolated, but its unclassified percentage
was nevertheless low (3.5%).

For each sequence, we defined itsevent probabilityto be the
percentage of its occurrences that evoked an event of one or
more spikes.

Response variability

SPIKE TIMING PRECISION. Using the binaryk-frame sequences
to characterize the stimulus, and the spike events to character-
ize the response, we turn to the next issue of this paper: a study
of the reliability and precision of responses and their depen-
dence on the stimulus. The timing precision of these events
was examined by determining the jitter in the time of the first
spike in the events associated with a particular sequence. This
is shown in Fig. 9A for the only possible two-frame sequence
with an OFF transition. This sequence generated a spike re-
sponse 49% of the time, and the time of the first spike had a

FIG. 7. PSTH matrix ofcell 4’s spike responses to
8-frame sequences containing anOFF transition between
frames f2 and f1, histogrammed in 1-ms bins relative to
the onset of stimulus frame f1 (maximum spike rate of
688 Hz).

FIG. 8. Cell 4’s extracted spike event responses to
8-frame sequences containing anOFF transition be-
tween frames f2 and f1, histogrammed in 1-ms bins
relative to the onset of frame f1. The quality of the
algorithm for associating spikes with a particular se-
quence can be judged by comparing this against the
PSTH matrix for 8-frame sequences in Fig. 7 (or more
objectively by determining the percentage of unclas-
sified spikes, see text).
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standard deviation of 3.256 0.04 ms. Because the responses to
all possible combinations of stimulus frames before and after
the two frames of the transition were averaged together, this
standard deviation represented the precision achieved by the
two frames of theOFF transition alone, when the other frames
were unspecified. Its value was already less than the standard
deviation expected (7.2 ms) if the first spike times were dis-
tributed uniformly over the three-frame search window that
defined events.

When eight frames of the stimulus were specified, with an
OFF transition occurring between frames f2 and f1 (which we
denote as an “f2-f1 transition”), every sequence had,3 ms SD
in the time to the first spike, including sequences with both
high and low event probability (Fig. 9B). The median across
sequences of this standard deviation was 1.286 0.13 ms
(median6 square root of the jacknife variance for the median
sequence). These results suggested that a significant part of the
timing jitter in response to two-frame stimuli was simply due

to imprecise specification of the stimulus history. In particular,
the average first spike times differed significantly for different
eight frame sequences, decreasing with increasing event prob-
ability, as plotted in Fig. 9C. This naturally broadened the
width of the distribution of first spike times when the responses
to different stimulus sequences were averaged together.

Because the timing precision clearly varied with the exact
stimulus sequence, we wanted a more generic measure of the
overall variability of the response for a given level of stimulus
specification. We selected the median, over sequences, of the
standard deviation of the time to the first spike in an event as
a robust index for this purpose. Figure 10 plots this median
standard deviation as a function of the number of frames
specified. The upper and lower interquartile ranges are also
depicted, showing that in some cases, the distribution of stan-
dard deviations is clearly asymmetric. Three curves are shown,
corresponding to the location within the sequence of theOFF

transition. The f2–f1 curve (OFF transition between f1 and f2)
indicates that the median precision improved until three to four
frames before the two frames encompassing theOFF transition
were specified (5–6 total frames). When four frames before the
transition were specified, specifying additional frames after the
transition (7 frames on the f3–f2 curve or 8 frames on the
f4–f3 curve) did not substantially alter the median precision,
suggesting that these frames had little effect on the overall
timing precision. This plateau in the precision likely reflected
the intrinsic variability of the cell because further stimulus
specification did not further increase the precision. In the group

FIG. 10. Median SD, across allk-frame sequences, of the distribution of
times to the 1st spike, plotted against the number of frames in the stimulus
window,k. The 3 curves correspond to different locations of theOFF transition
e.g., f2–f1 indicated theOFF transition was between frames f1 (the latest in
time) and f2. The upper and lower interquartile ranges for each point indicate
the width of the distribution of SDs across sequences. When no frames were
specified after the transition (curve f2–f1), the median SD leveled off at;1.3
ms, once 5–6 total frames were specified. When 1 or 2 frames were specified
after the transition, the curves simply shifted to the right, indicating that the
3–4 frames before the 2 frames encompassing the transition were primarily
responsible for improving the timing precision. Note that the f3–f2 curve is
offset to the right by 0.1 frame for clarity.

FIG. 9. Standard deviation of the distribution of times to the 1st spike in an
event for a given sequence plotted against the probability that an event was
evoked for that sequence.A: when only the 2 frames of theOFF transition were
specified, the single 2-frame sequence had a standard deviation of 3.256 0.04
ms and an event probability of 49%.B: when a total of 8 frames were specified,
including theOFF transition between f2 and f1, all sequences had sub-3 ms
standard deviations, with a median standard deviation of 1.286 0.03 ms. The
median sequence is shown as a filled circle.C: mean first-spike times plotted
against the event probability forcase B.
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data, the precision of all trials with,5% unclassified percent-
age (with the exception of a 6% contrast trial) improved with
increased specification of the frames before the transition; the
median standard deviation decreased on average by 416 13%
(n 5 9) from the case where only two frames were specified to
the case where eight frames were specified with theON or OFF

transition between frames f4 and f3. When all trials were
considered regardless of percentage unclassified, a decrease of
31 6 18% (n 5 21) was found on average.

Figure 11A plots the dependence of the median standard
deviation of the time to first spike on the percentage of unclas-
sified spikes across the population of cells, for eight-frame
sequences with f4–f3 transitions. The cluster of trials having
unclassified percentages,5% clearly exhibited high timing
precision (with 1 exception for a 6% contrast trial)—mean of
1.566 0.39 (SD) ms (n 5 9, excluding the outlier). Two trials

(1 cell at 40% contrast, another at 80% contrast) had high
unclassified percentages (26 and 22%, respectively) but nev-
ertheless had small median standard deviations (1.976 0.06
and 2.286 0.13 ms, respectively). The remaining nine trials
that had.5% unclassified spikes clustered at;4.01 6 0.58
ms. Many of these trials were less well driven, as evidenced by
their generally lower firing rate, as shown in Fig. 11B. Because
this group of trials often responded more diffusely in time,
making classification of spikes difficult, their poorer precision
was not surprising. However, given that their precision was
well below the 7.2 ms expected from random placement of
spikes, it seems likely that this reflected a true property of the
cells rather than an artifact of the classification method.

The timing precision showed only weak dependence on the
event probability, that is, on the reliability with which a se-
quence evoked a response. Within the group data, the Spear-
man rank-order correlation was statistically significant (P ,
0.05) when both all of the data and part of the data were
analyzed (seeMETHODS) in only 8 of 21 trials. It was not
significant for both conditions in another 7 of 21 trials. In the
remaining six trials, the significance level changed between the
two conditions. The fact that 13 of 21 trials showed no clear
correlation suggested that the dependence of first-spike-time
standard deviation on event probability was not strong. That is,
the temporal precision of response was not simply a result of a
“strong” stimulus: even responses that were infrequently
evoked could nonetheless be evoked at fairly precise times
when they did occur. Hence, reliability and timing precision
were not strongly coupled.

SPIKE COUNT PRECISION. The timing precision analysis fo-
cused on how the stimulus affected the jitter of a single spike
(namely the 1st spike in an event). To study the precision of the
remaining spikes in an event, we analyzed the precision of the
number of spikes in the events evoked by a stimulus. This
spike count precision was characterized by examining the
variance in the number of spikes per event versus the mean
number of spikes in an event. In the case of a Poisson process,
the variance is equal to the mean. At the other extreme, the
minimum possible variance for a discrete counting process
with a given meanm is obtained if the number of spikes in
every event is either ceil(m) (the smallest integer$ m) or
floor(m) (the largest integer# m). This minimum variance
varies periodically with the mean, dropping to zero at each
integer and forming a scalloped curve between integers.

Figure 12A plotscell 4’s spike count variance for the single
two-frame OFF sequence against its mean spike count. Also
shown are the line expected for a Poisson process and the
scalloped curve representing the minimum possible variance.
The variance for this sequence clearly fell close to the Poisson
limit. When the stimulus history specification was expanded to
eight frames, with theOFF transition between f2 and f1 (Fig.
12B), most of the sequences remained Poisson-like, but a few
began to have sub-Poisson responses. However, if we consider
eight-frame sequences with theOFF transition between the f4
and f3 frames (Fig. 12C), meaning that we specify two frames
after the transition frames as well as four frames before, the
variance for almost all sequences was significantly less than
Poisson, falling in many cases close to the minimum-variance
limit. These results were summarized by examining the median
across sequences of the Fano factor, which is the ratio of the

FIG. 11. Group data (across all cells and contrasts) showing the behavior of
the spike timing precision for trials having different unclassified spike per-
centages.A: the median SD of the time to the 1st spike in an event tended to
be lower for trials where fewer spikes were unclassified. Note however that in
2 trials, the standard deviation was still;2 ms despite a high unclassified
percentage.B: there was no strong dependence of the firing rate on the
unclassified percentage. All analyses were for 8-frame sequences withON or
OFF transition f4–f3. Conventions for this and future group data figures: black
points indicate cells having unclassified percentages,5%; gray points corre-
spond to cells having.5% of spikes unclassified. Lines connect points
corresponding to the same cell. Different contrast levels are distinguished by
differently shaped points, as assigned in the key.
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variance to the mean (Fig. 13). For an f2–f1 transition, the
Fano factor remained near the Poisson limit of one, regardless
of the number of frames specified before the transition. How-
ever, if one or two frames were specified after the transition
frames (f3–f2 transition or f4–f3 transition, respectively),
then, the median Fano factor fell dramatically with increasing
sequence length, reaching a value of 0.3156 0.037 (median6
square root of the jacknife variance for the median sequence)
for eight-frame sequences with f4–f3 transition. This was a
72% reduction from the two-frame case.

The marked suppression of the noise by the specification of
the frames after the transition can be straightforwardly under-
stood. Figure 9B shows that when no frames were specified
after the transition, there was a cluster of sequences that had
event probabilities near 50% regardless of how many frames
were specified into the past. Once one frame was specified after

the transition frames, however, the event probabilities diverged
so that many sequences produced events with nearly unit
probability, while other sequences produced events with very
small probability. This reflected the fact that, for this cell, the
event produced by a transition from bright to dark (10) could
be suppressed by a subsequent transition back to bright (101).
On the other hand, if no subsequent transition occurred (100),
an event was virtually always produced. This occurred almost
irrespective of what happened before theOFF transition. The
variance in spike count for each of the two cases (101 and 100)
could be small. However, by not specifying the frame after the
transition, as in the f2–f1 curve of Fig. 13, the two cases were
averaged together, producing a large variance and a Fano
factor close to unity. Thus simply increasing the stimulus
history was not always enough to obtain precise responses;
enough frames both before and after theOFF transition had to be
specified to maximize the precision (note that frames after the
transition are still within the causal range where the linear
kernel is sensitive to the stimulus).

In the group data, such large reductions in the spike count
Fano factor were not very common. Comparing the median
Fano factor for the two-frame case to the eight-frame, f4–f3
transition case, there was on average a 276 21% (n 5 21)
reduction across all trials. Considering only those trials with
unclassified percentages,5% yielded a 386 24% (n 5 10)
reduction; trials with unclassified percentages.5%, 176 9%
(n 5 11). The Fano factor itself was generally around or below
1 in nearly all cases, as shown in Fig. 14. No strong depen-
dence of the Fano factor on the unclassified percentage ap-
peared in the data, except that Fano factors,0.5 occurred only
in trials with ,5% of spikes unclassified. Moreover, note that,
among the low-unclassified-percentage trials, good timing pre-

FIG. 13. Median Fano factor (variance over mean) of the spike count, taken
across allk-frame sequences, plotted against the number of frames in the
stimulus window,k. The 3 curves correspond to different specifications of the
frames surrounding theOFF transition; labeling is the same as in Fig. 10. The
upper and lower interquartile ranges for each point indicate the width of the
distribution of Fano factors across sequences. When no frames were specified
after the transition (f2–f1 curve), the median Fano factor stayed close to unity,
the value expected for a Poisson process. By specifying 1 or 2 frames after the
transition, the Fano factor was dramatically reduced with increasing stimulus
window size, indicating that the frames after the 2 frames encompassing the
transition were critical for improving the spike count precision. This was
consistent with a spike vetoing effect by the frames occurring after the
transition. Note that the f3–f2 curve is offset to the right by 0.1 frame for
clarity.

FIG. 12. Variance of the distribution of the number of spikes in each event
in response to a stimulus sequence with anOFF transition, plotted against the
mean number of spikes in an event for that sequence.A: when only the 2
frames of theOFF transition were specified, the single 2 frame sequence had a
variance nearly equal to its mean, consistent with a Poisson process for spiking
(straight line).B: when a total of 8 frames were specified, including theOFF

transition between f2 and f1, most of the sequences still exhibited variances
close to their means, although a few sequences that evoked larger numbers of
spikes on average showed significantly sub-Poissonian variances.C: when 2
frames were specified after theOFF transition (8-frame sequences withOFF

transition between f4 and f3), however, most sequences displayed sub-Poisson
variances, with several sequences approaching the minimum-variance limit
imposed by the discreteness of the spikes (scalloped line).
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cision did not necessarily imply good count precision (compare
Fig. 11A to Fig. 14).

Information transmission

The spike timing and count variability measures discussed
above gave some indication of the precision of LGN neurons.
How much information did this level of precision allow the
cells to transmit?

To address this, we changed our analysis method. The pre-
ceding analyses of variability depended on defining events that
associated each spike with a unique sequence that evoked it.
This required specifying both sequence length and the location
within the sequence of the transition (because spikes were
associated with transitions and these 2 facts uniquely linked
transitions to sequences). For the information analysis, we
instead consideredall sequences of a given length, without
regard for the presence of a transition, and simply examined
the response at some fixed time interval after the initiation of
the sequence.

We computed information using the direct method (see
METHODS). We binned time into discrete units of sizeDt,
typically 1 ms, and defined the “letters” of the response “al-
phabet” as the number of spikes in a bin (0 or 1 for 1-ms bins).

A string ofM such letters formed a response “word”—forM 5
1, the word was simply the number of spikes in a single bin.
Ideally, the choice of bin size should reflect the degree of
temporal resolution in the code, while the word size should
reflect the longest time scale of temporal correlations in the
code. The timing precision analysis suggested that a reasonable
bin size was;1 ms. Initially ignoring correlations between
bins, we calculated the information aboutk-frame stimuli by
considering only single-bin words at this resolution (Fig. 15).
The information grew with time from the onset of the stimulus
sequence, provided that further stimulus frames continued to
be specified, up to at least nine frames. At this point, the
maximum information was;3.5 bits/spike and appeared to be
nearing a plateau. The existence of a plateau was reasonable
since a given response time bin should give little or no infor-
mation about stimulus frames that occurred far in the past. For
longer sequences (k $ 4), the information began to drop from
its peak at;24–26 ms after the onset of the last frame in the
sequence, or;16–18 ms after the onset of the first unspecified
frame. This suggests that 16–18 ms was the minimum delay
for a frame to significantly influence the response. This was in
rough agreement with our previous results that one and perhaps
two frames after the transition frames can influence the spike
count by vetoing or allowing spikes induced by the transition;
if the response occurs 32 ms after the transition, then these
frames would have onsets;15 and 24 ms before the response
that they influence.

We also compared the maximal observed information rate of
3.5 bits/spike to the cell’s maximum possible information rate,
as measured by the entropy of its spike train. Achieving this
maximum would imply that all of the cell’s response variability
(as measured in single 1-ms bins) was used to encode the
stimulus. In fact, the coding efficiency, the ratio of the actual
information coded to that which could possibly be encoded,
was;51% (fork 5 9), so that the cell transmitted information
in individual 1-ms bins at a level that was within a factor of two
of its limit.

We next examined the role of time resolution in information
encoding by varying the binwidth. We considered 8-ms words

FIG. 14. Group data showing the behavior of the spike count precision for
trials having different unclassified spike percentages. The median Fano factor
could be less than one regardless of the percentage of unclassified spikes, but
the lowest factors (,0.5) were seen only for small unclassified percentages.

FIG. 15. Average per spike information between
k-frame sequences and a single 1-ms bin at a time
relative to the onset of frame f1. Different curves
correspond to different numbers of frames in the
stimulus. The shape of the 1-frame case can be com-
pared with the PSTH matrix in Fig. 4, although note
the difference in notation and placement of the
frames. Approximately 20 ms after frame f1 was
shown, the information in the 1-frame case increased,
reaching a peak of 1 bit per spike at;30 ms. This
corresponded to the time at which a spike only oc-
curred in response to a dark frame and virtually never
to a bright frame. In contrast,;40 ms after the onset
of f1, a spike was much more likely to be associated
with a bright frame rather than a dark frame, yielding
a second peak in the information. For largerk, the
(smoothed) maximum stimulus information (see
METHODS) began to level off near 3.5–3.6 bits/spike
(for 9- and 10-frame sequences). At early times,
10-frame sequences showed spurious information
due to data insufficiency; this did not affect the peak
informations for 10-frame sequences because the
probability distribution for words at those times was
completely different from that near the peak.
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of the spike train, and binned these words using either 1-, 2-,
4-, or 8-ms resolution. If the precise timing of the spikes at
these resolutions within the word were important for transmit-
ting information, then we expected more information at smaller
bins than larger bins. Finer resolution increases the possible
information the spike train can code; if the actual information
coded also grows, then the coding efficiency would not signif-
icantly change with increasing resolution. On the other hand, a
fall-off of the coding efficiency would indicate that the in-
creased resolution is not being used to code information. We
computed maximum information rates for eight-frame se-
quences to ensure that there were sufficient repeats of each
sequence to allow us to estimate the information for multiple-
bin response words. The information rate increased from 2.4
bits per spike at 8-ms bins to 3.1 bits per spike at 2-ms bins, a
29% increase (Fig. 16A), while the spike train entropy in-
creased by 36% over the same range. That is, 0.29/0.365 81%
of the increase in entropy associated with this increase in
resolution was used to encode information. As a result, the
coding efficiency stayed relatively flat, decreasing only;5%
from a bin size of 8 to 2 ms. Thus the position of spikes at
#2-ms resolution was significant for coding information. Im-
proving the resolution by a factor of 2 from 2 to 1 ms yielded
an additional 3% increase in information to 3.2 bits per spike,
compared with an increase in entropy of 15%, suggesting that
only 20% of the entropy change encoded information. Thus
while more information was encoded at this finer resolution,

there was a diminishing return as the noise became a propor-
tionately larger contributor to the cell’s increased variability.

Redundancy or synergy in coding

Given that a temporal resolution down to 1 ms was useful,
another important question to address is the manner in which
patterns of spikes in these bins contributed to information
transmission. Three possibilities exist: different 1-ms bins may
code information independently; they may encode information
redundantly, so thatM-bin words code less information thanM
times the one-bin-word information; or they may interact syn-
ergetically so thatM-bin words code more thanM times the
one-bin-word information. Note that the degree of redundancy
or synergy may change withM—for some word sizes, the
responses may be more redundant, whereas for other word
sizes, they may become synergetic.

We investigated the degree of synergy and redundancy in the
LGN responses in three ways. First, we compared the infor-
mation in 8-ms words with 1-ms bins to that found in 1-ms
words. For our example cell, the 3.2 bits per spike for 8-ms
words with 1-ms bins was close to the 3.3 bits per spike for 1-
ms words found for eight-frame sequences in Fig. 15, indicat-
ing only a little redundancy and no synergy between the
responses of adjacent 1-ms bins. This near independence of
spikes in 8-ms words was not simply due to Poisson firing
since the distribution of the number of spikes within the 8-ms
window showed a much larger probability for two spikes
(0.21) than would be expected from the square of the one spike
probability (0.008). This result suggests that the cell was burst-
ing, although the bursts apparently did not lead to a large level
of redundancy. This could happen because redundant patterns
(such as bursts) might be used synergetically to code for the
stimulus. It is important to point out that our measure looks at
the averagelevel of redundancy or synergy so that the com-
bination of different groups of redundant and synergetic spikes
could appear independent at this time scale.

Second, to determine whether this lack of significant redun-
dancy or synergy survives at longer time scales, we examined
the information in much longer words. Unfortunately, the
direct method as applied to the repetitions of thek-frame
sequences could not be used to study response word lengths
longer than;8 ms (for 8-frame stimuli) due to data insuffi-
ciency. Instead, we estimated a lower bound on the information
in the entire response to the full M-sequence by using the two
repeats of the full M-sequence (seeMETHODS). Assuming that
the stimulus was the only common drive for the two responses,
then the information between the responses to the two repeats
bounded from below the information either could carry about
the stimulus. We compared this lower bound extracted in the
limit of infinitely long response words to the exact information
rates computed from eight-frame sequences and 8-ms re-
sponses (Fig. 16). The lower bound came reasonably close to
the information rates computed from 8-ms words across all bin
sizes considered. This implies that there is little redundancy
over times longer than 8 ms but leaves open the possibility of
synergy (if the true infinite-word information were much
higher than our lower bound).

As a final test of the redundancy or synergy between
spikes, we compared the exact information transmitted by
individual 1-ms bins to the lower bound on the information

FIG. 16. Information transmission at different time resolutions.A: the in-
formation calculated by the direct entropy method is shown for 2 cases: solid
circles were computed from the multiple repeats of 8-frame stimuli, focusing
on 8-ms spike words at 1-, 2-, 4-, and 8-ms bin sizes; open circles were
computed from the 2 full repeats of the M-sequence and represent only a lower
bound on the information from infinitely long words of spikes. Both measures
showed an increase in information at finer time resolutions, and the lower
bound was close to the information observed with 8-ms words.B: the corre-
sponding coding efficiencies at the different time resolutions showed only a
little change with bin size, indicating that the increased capacity gained at
higher temporal resolution was being used by the neuron to code information
about the stimulus.
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transmitted by infinitely long words of 1-ms bins. Figure 17
plots these two measures for all cells and trials in the data in
terms of both bits per spike and per second. Nearly all of the
trials fell close to the diagonal line where the information
from single bins equaled the lower bound to the information
from infinitely many bins. To the right of this diagonal line,
coding is synergetic: more information is conveyed on av-
erage by combinations of spikes in 1-ms bins than by single
1-ms bins. To the left of this diagonal line, coding is
redundant: less information is transmitted on average by the
words of bins than by the single 1-ms bin. Hence, the fact
that the trials aligned close to, but to the left of, the diagonal
suggested that there was at most a slight amount of redun-
dancy for real cells. Since the infinite word information is a
lower bound, we can only be certain that the true informa-
tion lay to the right of the plotted data—that is, there was
little or no redundancy and possibly some synergy.

Comparison to quasi-linear threshold models

The results reported here suggest that, while there was
variation among the population, visual thalamic cells could
exhibit very precise responses that conveyed considerable
amounts of information per spike on average. Responses of
these cells are often modeled as resulting from the convolution
of the cell’s temporal kernel (shown in Fig. 1) with the stim-
ulus, followed by a nonlinear thresholding to generate a firing
rate (seeMETHODS). Is the degree of precision consistent with
this picture?

We first chose the threshold that gave a best match of the
model PSTH to the data and assumed that spikes were gener-
ated randomly according to an inhomogenous Poisson process
with the model PSTH (appropriately scaled to yield the same
mean rate as the data). The best-matched model gave a broader
and more symmetric PSTH than was observed in the data,
suggesting that the precision of model spikes was significantly
worse. Extracting spike events as described above allowed us
to directly compare the precision of the model (Fig. 18B) to the
data (Fig. 18A), in response to eight-frame sequences that had
a bright to dark transition in the rightmost two frames. The
model spike events were clearly more diffuse in time and did
not capture the details of the dependence of response onset
times on stimulus sequence. We next considered models in
which spikes were generated from a Poisson process with an
absolute refractory period. We considered this for the case in
which the firing rate was a linear function (Fig. 18C) or a
quadratic function (not shown) of the thresholded filter output.
In each case, refractory period and threshold were chosen
together to optimally match the data (least mean-square error in
PSTH). The PSTH of the linear refractory model was slightly
narrower than that derived without a refractory period but
continued to be wider than the data and to not show the
temporal irregularity of the data. The model using a quadratic
function gave results similar to, but slightly poorer than, those
of the linear refractory model, so we do not consider it further.
A relative refractory period in addition to an absolute refrac-
tory period also yielded quantitatively similar results as the
case of an absolute refractory period alone.

The model’s failure to capture the detailed structure of
response onset times is specifically due to an underestimation
of longer onset times, while shorter onset times were well
reproduced by the model (Fig. 19A). This discrepancy can be
understood from an examination of the PSTH matrices (Fig.
18): it appears that when two or more consecutive dark frames
preceded the bright to dark transition, this lengthened first-
spike times in the data; but this effect was not picked up by any
of the models. The models also reasonably reproduced the
mean spike counts observed in the data, but showed a tendency
to underestimate smaller mean counts and overestimate higher
ones (Fig. 19B).

The Poisson model did a poor job of reproducing the ob-
served variability in spike timing or spike count (Fig. 20,F).
The inaccuracy in spike count precision is not surprising,
because a Poisson model will always have a Fano factor of 1.
However, the model incorporating a refractory period came
much closer to reproducing the precision of the data (Fig. 20,
‚). This model tended to slightly overestimate smaller first-
spike-time standard deviations and Fano factors and to under-

FIG. 17. Group data on the information in 1-ms bins plotted against the
lower bound for the information in infinitely long words of 1-ms bins. The
former was computed from the multiple repeats of 9-frame sequences, while
the latter was estimated from the two repeats of the full M sequence.A: data
plotted as information per spike.B: data plotted as information per second. In
both representations, the data fell close to the diagonal line where the 1-ms bin
information equals the infinitely long word information. This suggests that
there was at most a minimal amount of redundancy, and possibly synergy, in
the coding by successive spikes.
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estimate larger ones, showing less overall diversity of first-
spike-time standard deviations and Fano factors than the data.

D I S C U S S I O N

We have found that LGN neurons can show great precision
in their responses to M-sequence stimuli. For at least a subset
of cells, spikes occur in discrete events triggered by anON or
OFF transition with spike rates close to zero at other times. The
time of the first spike in an event can be precise to 1–2 ms, and
this precision can be maintained even for unreliable events
(events that occur with low probability). The four frames
before the transition frames influence the event timing, so these
frames must be specified to discern the cell’s spike timing
precision. The number of spikes in an event can also show
great precision, with Fano factor (ratio of variance to mean)
approaching 0.3 (vs. a value of 1 expected for a Poisson
process). The frames after a transition can “veto” or allow an
event so that two frames after the transition frames as well as
the four before must be specified to discern the cell’s spike
count precision. This precision of response allows cells to carry
up to 3.5 bits per spike of information about the stimulus. The
coding efficiency of information transmitted in 1-ms bins can
be within a factor of two of the limit set by the spike train’s
entropy—a limit that is achieved when all of the cell’s vari-
ability is used to code information. The coding efficiency
remains relatively constant as the temporal resolution for spec-
ifying spike times increases to at least 2 ms, and still more
information is gained by increasing resolution to 1 ms, indi-
cating that the timing of spikes at these resolutions carries
information about the stimulus. By comparing the information
carried by 1-ms response words to that in 8-ms words and to
the lower bound on the information transmitted by infinitely
long response words, we find that there is at most only a
modest amount of redundancy in the coding by successive
spikes, and we find no evidence for synergy. Finally, this

precision can be largely, but not entirely, accounted for by a
model in which firing rate is generated by filtering the stimulus
with the cell’s temporal kernel and applying a threshold, fol-
lowed by spike generation as a Poisson process with an abso-
lute refractory period.

Previous work on spike timing and count precision

Our work adds to a growing body of work finding high
response precision and high information rates in the LGN in
response to full-field noise stimuli. Keat et al. (2001), in work
contemporary with the present work, found 1–2 ms SD for the
time to the first spike in an event in response to full-field
Gaussian white noise in close agreement with the present
results for binary white noise. Reinagel and Reid (2000) re-
ported a particularly low width (SD) of 0.6 ms for one PSTH
peak in one cell’s response to a full-field “naturalistic” noise
stimulus but did not more generally report on timing precision.
Both of these papers and Kara et al. (2000) demonstrated
sub-Poissonian Fano factors in LGN responses to full-field
Gaussian noise in agreement with the present findings. Com-
parable precision of spike timing and count in response to
full-field noise stimuli has been reported in the retina (Berry
and Meister 1998; Berry et al. 1997; Kara et al. 2000; Keat et
al. 2001).

Measures of response to other stimuli often do not show
similar precision. Thus Guido and Sherman (1998) measured
the jitter in the time to first spike in responses to spots flashed
in the center of the LGN cell receptive field and reported
standard deviations ranging from;3 to 35 ms, depending on
the mode of firing (burst vs. tonic). The greater variability seen
in this case of a single flashed spot is akin to the spread of the
PSTH seen when only a single frame is specified (Fig. 4) and
may reflect the lack of specification of the cell’s initial state.
That is, when stimulated only by a blank screen (before stim-
ulus onset), spontaneous activities may lead a cell to wander

FIG. 18. Comparison of the data to three quasi-
linear models: spike event PSTH matrices. Parameters
used for each model gave the best match between the
data and models’ full PSTH.A: data.B: linear gain,
Poisson spikes.C: linear gain, Poisson with 3-ms
absolute refractory period. The stimulus was con-
volved with the temporal kernel of the real cell (Fig.
1), thresholded, and scaled to approximately match the
mean (and peak, for refractory model) firing rates of
the real cell. Threshold and, inC, refractory period
were selected to minimize the mean square error be-
tween the model PSTH and the data PSTH. The gen-
eral location of responses was roughly accurate, but
the widths of the responses and the asymmetry in the
peaks of the data were not fully reproduced by the
models. For both linear Poisson and linear refractory
models, the optimal threshold was 3.4 in units of
output of the convolution of the temporal kernel with
the stimulus, where the kernel was normalized as in
Fig. 1 and bright and dark stimulus frames were rep-
resented as61. For comparison, the output of the
convolution had a peak value of 10.9 and an rms of 4.3
(and mean 0).
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through a state space of comparable diversity to that created by
the set of binary stimulus sequences that could precede a single
frame in our experiments. Similar reasoning might also explain
why statically flashed, spatially nonuniform stimuli have pro-
duced Fano factors larger than 1 in several LGN studies
(Hartveit and Heggelund 1994; Levine et al. 1996; Sestokas
and Lehmkuhle 1988). Reich et al. (1997) reported a PSTH
standard deviation of 5 ms for one LGN cell in response to a
slowly drifting sine grating, but at least some of this jitter was
due to a slow drift in response phase across many trials, which
may have represented a slow change in cell state; responses
over a small set of adjacent trials showed considerably greater
precision.

Specifying neuronal state

The idea that responses to temporally modulated stimuli can
show great precision, even while responses to more static
stimuli may show greater variability, has already a long history

(e.g., Buracas et al. 1998; de Ruyter van Steveninck et al. 1997;
Mainen and Sejnowski 1995) and has stirred controversy (e.g.,
Egelhaaf and Warzecha 1999). Our findings add a focus on
stimulus history, showing that sufficient specification of a
temporally varying stimulus is key to revealing neural preci-
sion. By extension, this emphasizes the importance of control
of neuronal state: noise may not be intrinsic to a neuron or a
piece of neural tissue but may instead simply represent vari-
ables that are not under the experimenter’s control. While a
dynamic stimulus may control neural firing and thus control a
given cell’s state, lack of a stimulus (a blank screen) yields
spontaneous activities that are stochastic, being triggered at
least in part by spontaneous quantal events in photoreceptors
(Mastronarde 1989), and these in turn may lead a cell’s state to
wander in an uncontrolled way, presenting an uncontrolled
initial condition at the moment of a flashed stimulus. A related
argument was made by Buracas et al. (1998), who showed that
whether or not a given stimulus evoked a spike in a cell of area

FIG. 20. Comparison between the spike timing SDs (A) and spike count
Fano factors (B) for the data and the models plotted for all 8-frame sequences
with an OFF transition between f4 and f3. The Poisson model poorly matches
the precision of the data. The model with refractoriness does considerably
better but shows some tendency to overestimate smaller first-spike times/Fano
factors and underestimate larger ones. The points with 0 SD and Fano factor
showed only one non-0 spike response across the 128 trials.

FIG. 19. Comparison between the mean 1st-spike times and spike counts
for the data and the models, plotted for all 8-frame sequences with anOFF

transition between f4 and f3.A: the 1st-spike times in the data were well
approximated by all of the models except that larger times were underesti-
mated.B: the spike counts were generally well predicted by the models,
although there was a small tendency to underestimate small counts and
overestimate high counts.
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MT was strongly correlated to the local field potential at the
given time and place.

It is interesting that, at least for our binary stimuli, specifi-
cation of 8 frames (67 ms) seems adequate to specify the LGN
state to sufficient precision to saturate spike timing and count
precision, while 9–10 frames (75–83 ms) saturate the infor-
mation coded by spikes. These numbers are in rough agree-
ment with the width of the cell’s temporal kernel (Fig. 1),
which differs from zero over a span of;65–70 ms.

Previous work on neuronal information transmission
in the LGN

The information rates we have found—2–3.5 bits/spike,
20–90 bits/s—are similar to those found by others in LGN
who, like us, used “direct” methods (Eckhorn and Po¨pel 1975;
Reinagel and Reid 2000). These methods directly estimate the
information carried by the spike train about the stimulus,
without a requirement for explicit decoding, by assaying cer-
tain stimulus and response probability distributions (Eckhorn
and Po¨pel 1974; Strong et al. 1998a,b). Indirect methods, such
as the stimulus reconstruction method (Rieke et al. 1997), rely
on being able to “decode” the response. These methods provide
only a lower bound to the information rates: any information
that is successfully decoded was present, but there is no guar-
antee that all information that was present was successfully
decoded. Rates found using indirect methods in LGN have
generally been quite low—only;2 bits/s (Dan et al. 1998;
McClurkin et al. 1991; Reinagel et al. 1999)—suggesting that
much information present in the LGN spike trains was missed
by those methods.

Stimuli better matched to the receptive field may yield more
information. Eckhorn and Po¨pel (1975) found that spatially
uniform stimuli yield lower LGN transmission rates (25–40
bits/s at the best flash rate) than spots isolated at the receptive
field center (60–80 bits/s) (Eckhorn and Po¨pel 1975). Their
spot and full-field stimuli were only briefly flashed at slow,
periodic intervals (#30 Hz). Full-field stimuli modulated ran-
domly at higher rates drive relatively high LGN information
rates, as shown both by our work and that of Reinagel and Reid
(2000). The latter sees a range of information rates similar to
what we have found even though their naturalistic stimulus
distribution contained much more entropy than our binary
distribution (924 bits/s in their distribution vs. 120 bits/s in
ours). That suggests that we may be seeing the limits of what
an LGN cell can code, at least to full-field stimuli. On the other
hand, the results of Eckhorn and Po¨pel (1975) suggest that both
we and Reinagel and Reid (2000) might have seen even higher
information rates if we had restricted flashes to the cells’
receptive field centers.

High information rates like those reported here have also
been observed in a variety of other systems, including retina,
visual cortex, and insect motion-detecting neurons (e.g., Berry
et al. 1997; Buracas et al. 1998; de Ruyter van Steveninck et al.
1997; Reich et al. 2000; Strong et al. 1998a), suggesting that
the precision found here may not be a special property of LGN
or thalamic neurons.

Minimal redundancy

The issue of redundancy or synergy in the neural code has
been addressed in numerous papers, but we are aware of only

a few (Brenner et al. 2000; Reinagel and Reid 2000) that have
looked at the issue in terms of temporal coding in a single
neuron rather than population coding across multiple neurons.
Reinagel and Reid (2000) found that LGN neurons can some-
times code more information on average in patterns of spikes
than if those spikes were considered independently. The syn-
ergy they reported, however, was at most only;20%, and
many neurons were slightly redundant (#10%) or only very
weakly synergetic. Our results are consistent with this in the
sense that we also observe at most only mild redundancies in
the coding by individual neurons. We cannot rule out syner-
gies, but to the degree that our lower bound closely approxi-
mates the true information, the fact that none of our neurons
lay to the right of the independence line in Fig. 17 suggests that
there are also no large synergies in the coding by individual
neurons.

Models of response generation

We have found that a simple model of response generation,
based on thresholding the output of the cell’s temporal kernel
applied to the stimulus and imposing a refractory period, can
match much but not all of the precision of response that we
observed. To achieve this result, it was critical that the cell’s
temporal kernel be used and not simply the spike-triggered
average; use of the latter gave noticeably less precision in both
timing and spike count (not shown).

The discrepancies between the precision of the model and
the observed data most likely arise from the linear filter model
rather than the specifics of the spike generation mechanism.
The PSTH matrix generated by the model is somewhat wider
and considerably more regular than that of the data. Most
strikingly, the model fails to show the lengthening of first-spike
times observed in the data when two or more consecutive dark
frames preceded the bright/dark transition. This yields a less
“jagged” left edge for the model PSTH compared with the data
PSTH. This jagged edge is dominated by a response’s first
spikes, which are unaffected by refractoriness. Accordingly,
the error is unlikely to be in our model of spike generation and
refractoriness but rather in the model of PSTH generation by
linear filtering. This is also suggested by the fact that the
temporal kernel and the spike-triggered average both give
similarly smooth leading edges (data not shown), so that it
seems unlikely that a better filter would alter this result. It is
further suggested by the results of Kara et al. (2000), who
found that they could successfully model the spike count
variability of LGN cells by beginning with the observed PSTH
(rather than deriving the PSTH from a filter as we are doing)
and adding both absolute (;1 ms) and relative (;20 ms)
refractory periods extracted from the cell’s interspike interval
distribution.

Accounting for the observed PSTH presumably requires a
more complex nonlinearity in our model of firing-rate gener-
ation than the thresholding used here; it would be interesting to
determine whether contrast-gain-control mechanisms (Shapley
and Victor 1978; Victor 1987) might be sufficient to reproduce
the response onsets and improve the agreement between the
model and data precision measures. Nonetheless, it should be
noted that the model as it stands is significantly nonlinear. The
optimal threshold value (optimal in the sense of least mean-
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square error in matching the data PSTH) was 80% of the
root-mean-square of the output of the filtering of the stimulus
by the temporal kernel (see legend to Fig. 18); that is, it was
necessary to set a significant fraction of positive filter outputs
to zero. The optimal absolute refractory period was 3 ms, long
compared with probable biophysical absolute refractory peri-
ods of'1 ms. (When both an absolute and a relative refractory
period were used, the optimum was similar, 2.5 ms absolute
plus 0.5 ms relative refractory period.)

An alternative approach to modeling the neural responses
observed here is to dispense with a firing rate model altogether
and instead directly model the spike generation process. Berry
et al. (1997) found that responses of retinal neurons to full-field
noise stimuli consisted of brief response events surrounded by
substantial periods of zero spike rate, similar to the cases in our
experiment in which most spikes could be accounted for by
response events locked toON or OFF stimulus transitions. This
has led the same group more recently (Keat et al. 2001) to
suggest that a rate description of such responses, in which
spike probability is zero for extended periods interrupted by
brief events, may be inadequate. Instead they proposed pre-
dicting the spikes themselves rather than a spike rate by re-
garding the output of a cell’s linear filter applied to the stimulus
as a voltage-like variable rather than a rate and counting
upward-going threshold crossings of this voltage as spike
times. Parameterizing the filter, adding a spike-induced “hy-
perpolarization” to represent refractoriness, and adding appro-
priate noise yielded a 20-parameter model (15 parameters
describing the filter and 5 additional parameters). They showed
that such a model, fit individually to each cell by optimizing a
cost function incorporating precision measures, could do a
good job of replicating the cell’s spiking events and their
statistics for both retinal and LGN cells in response to Gaussian
noise stimuli. We have no reason to doubt that the same models
would well describe the responses to binary noise stimuli
studied here.

Conclusion

LGN cells can show remarkable precision in their responses
and code information at high rates and with high coding
efficiency. Revealing this precision requires sufficient specifi-
cation of the stimulus history. This points to the possibility that
measurements of neuronal precision may be limited as much
by the degree to which the experimenter controls the variables
relevant to a cell’s response as by the intrinsic precision of
neural processing.
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ECKHORN R AND PÖPEL B. Rigorous and extended application of information
theory to the afferent visual system of the cat. I. Basic concepts.Kybernetik
16: 191–200, 1974.

ECKHORN R AND PÖPEL B. Rigorous and extended application of information
theory to the afferent visual system of the cat. II. Experimental tests.Biol
Cybern17: 7–17, 1975.

EGELHAAF M AND WARZECHA AK. Encoding of motion in real time by the fly
visual system.Curr Opin Neurobiol9: 454–460, 1999.

GRAY C, MALDONADO P, WILSON M, AND MCNAUGHTON B. Tetrodes markedly
improve the reliability and yield of multiple single-unit isolation from
multi-unit recordings in cat striate cortex.J Neur Methods63: 43–54, 1995.

GUIDO W AND SHERMAN SM. Response latencies of cells in the cat’s lateral
geniculate nucleus are less variable during burst than tonic firing.Vis
Neurosci15: 231–237, 1998.

HARTVEIT E AND HEGGELUND P. Response variability of single cells in the
dorsal lateral geniculate nucleus of the cat. Comparison with retinal input
and effect of brain stem stimulation.J Neurophysiol72: 1278–1289, 1994.

KARA P, REINAGEL P, AND REID RC. Low response variability in simulta-
neously recorded retinal, thalamic, and cortical neurons.Neuron27: 635–
646, 2000.

KEAT J, REINAGEL P, REID RC, AND MEISTER M. Predicting every spike: a
model for the responses of visual neurons.Neuron30: 803–817, 2001.

LEVINE MW, CLELAND BG, MUKHERJEE P, AND KAPLAN E. Tailoring of
variability in the lateral geniculate nucleus of the cat.Biol Cybern 75:
219–227, 1996.

LIU RC, TZONEV S, REBRIK S, KURGANSKY A, AND MILLER KD. Spike precision
and information in cat visual thalamus.Soc Neurosci Abstr26: 1196, 2000.

MAINEN ZF AND SEJNOWSKI TJ. Reliability of spike timing in neocortical
neurons.Science268: 1503–1506, 1995.

MASTRONARDEDN. Correlated firing of retinal ganglion cells.Trends Neurosci
12: 75–80, 1989.

MCCLURKIN JW, GAWNE TJ, RICHMOND BJ, OPTICAN LM, AND ROBINSON DL.
Lateral geniculate neurons in behaving primates. I. Responses to two-
dimensional stimuli.J Neurophysiol66: 777–793, 1991.

MEISTER M AND BERRY MJ. The neural code of the retina.Neuron 22:
435–450, 1999.

PRESSWH, TEUKOLSKY SA, VETTERLING WT, AND FLANNERY BP. Numerical
Recipes in C(2nd ed.). Cambridge, UK: Cambridge Univ. Press, 1992.

REICH DS, MECHLER F, PURPURA KP, AND VICTOR JD. Interspike intervals,
receptive fields, and information encoding in primary visual cortex.J Neu-
rosci 20: 1964–1974, 2000.

REICH DS, VICTOR JD, KNIGHT BW, OZAKI T, AND KAPLAN E. Response
variability and timing precision of neuronal spike trains in vivo.J Neuro-
physiol77: 2836–2841, 1997.

REINAGEL P, GODWIN D, SHERMAN SM, AND KOCH C. Encoding of visual
information by LGN bursts.J Neurophysiol81: 2558–2569, 1999.

REINAGEL P AND REID RC. Temporal coding of visual information in the
thalamus.J Neurosci20: 5392–5400, 2000.

RIEKE F, WARLAND D, DE RUYTER VAN STEVENINCK R, AND BIALEK WB.
Spikes: Exploring the Neural Code.Cambridge, MA: MIT Press, 1997.

SANDERSON KJ. The projection of the visual field to the lateral geniculate and
medial interlaminar nuclei in the cat.J Comp Neurol143: 101–118, 1971.

SESTOKASAK AND LEHMKUHLE S. Response variability of X- and Y-cells in the
dorsal lateral geniculate nucleus of the cat.J Neurophysiol59: 317–325,
1988.

SHAPLEY RM AND VICTOR JD. The effect of contrast on the transfer properties
of cat retinal ganglion cells.J Physiol (Lond)285: 275–298, 1978.

2805VARIABILITY AND INFORMATION IN THE CAT LGN

J Neurophysiol• VOL 86 • DECEMBER 2001• www.jn.org

Downloaded from journals.physiology.org/journal/jn (096.224.087.234) on July 30, 2020.



STRONG SP,DE RUYTER VAN STEVENINCK RR, BIALEK W, AND KOBERLE R.
On the application of information theory to neural spike trains. In:
Pacific Symposium on Biocomputing ’98,edited by Altman RB, Dunker
AK, Hunter L, and Klein TE. Maui, HI: Singapore World Scientific,
1998a, p. 621– 632.

STRONG SP, KOBERLE R, DE RUYTER VAN STEVENINCK RR, AND BIALEK W.
Entropy and information in neural spike trains.Physical Review Letters80:
197–200, 1998b.

SUTTER EE. A deterministic approach to nonlinear systems analysis. In:Non-
linear Vision, edited by Pinter RB and Nabet B. Boca Raton, FL: CRC,
1992, p. 171–220.

THOMSON DJ AND CHAVE AD. Jacknifed error estimates for spectra, coher-
ences, and transfer functions. In:Advances in Spectrum Analysis and Array
Processing,edited by Haykin S. Englewood Cliffs, NJ: Prentice Hall, 1991,
vol. 1, p. 58–113.

TZONEV S, REBRIK S, AND MILLER KD. Response specificity of lateral genic-
ulate nucleus neurons.Soc Neurosci Abstr23: 450, 1997. Poster available as
http://mccoy.ucsf.edu/Papers/Sfn97/SFN97_poster.html.

VICTOR JD. The dynamics of the cat retinal X-cell centre.J Physiol (Lond)386:
219–246, 1987.

VICTOR JD. Temporal aspects of neural coding in the retina and lateral
geniculate.Network10: R1–R66, 1999.

2806 R. C. LIU, S. TZONEV, S. REBRIK, AND K. D. MILLER

J Neurophysiol• VOL 86 • DECEMBER 2001• www.jn.org

Downloaded from journals.physiology.org/journal/jn (096.224.087.234) on July 30, 2020.


