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Liu, Robert C., Svilen Tzonev, Sergei Rebrik, and Kenneth D. precision of spike times and counts has been investigated in
Miller. Variability and information in a neural code of the cat laterabeyeral neural areas, although only a few have looked at the
geniculate nucleus] NeurophysioB6: 2789-2806, 2001. A central |5¢arq) geniculate nucleus (LGN) (Guido and Sherman 1998;
theme in neural coding concerns the role of response variability a,pﬁ tveit and H lund 1994: K t al. 2000: Keat et I,
noise in determining the information transmission of neurons. Thj artvert an eggelun 794, kara et al. , feat et al.
issue was investigated in single cells of the lateral geniculate nucletf01; Reich et al. 1997; Reinagel and Reid 2000; Sestokas and
of barbiturate-anesthetized cats by quantifying the degree of precislgghmkuhle 1988). In this paper, we further explore the degree
in and the information transmission properties of individual spikef precision found in LGN neurons of barbiturate-anesthetized
train responses to full field, binary (bright or dark), flashing stimulicat by examining both spike count and timing measures. We go
We found that neuronal responses could be highly reproducible dm to quantify the amount of information transmitted by neu-
their spike timing (-1-2 ms standard deviation) and spike counfons about the stimulus and to determine the degree to which
(~0.3 ratio of variance/mean, compared with 1.0 expected for\goqels of response based on linear integration of inputs can
Poisson process). This degree of precision only became appatr, ount for the observed precision.

when an adequate length of the stimulus sequence was specifie . .
determine the neural response, emphasizing that the variables relevaﬁ unique feature of the present approach is that we closely

to a cell's response must be controlled to observe the cell's intrinG&amined the dependence of neuronal variability on the degree
response precision. Responses could carry as much as 3.5 bits/spil¥ gipecification of the stimulus. To do this, we employed a
information about the stimulus, a rate that was within a factor of tweseudorandom binary stimulus known as an M-sequence (Sut-
of the limit the spike train could transmit. Moreover, there appearedter 1992). We focused only on characterizing the neurons’
be little sign of redundancy in coding: on average, longer responsesponse to temporally varying stimuli by showing full-field
sequences carried at least as much information about the stimulupgght and dark frames, ignoring the center-surround spatial
would be obtained by adding together the information carried Btructure of LGN neurons. M-sequences provide a statistically

short_er response sequences considered independently. There alsQfSent and convenient method for analyzing responses be-
no direct evidence found for synergy between response sequenﬁ%l

These results could largely, but not entirely, be explained by a simp e%lse they have the nice property that every sequence of bright

model of the response in which one filters the stimulus by the cel d dark frames of a given length (up to some limit) is repeated
impulse response kernel, thresholds the result at a fairly high levil€ Same number of imes somewhere throughout the sequence

and incorporates a postspike refractory period. seemeTHoDs). This allowed us to simultaneously examine the
responses— both the mean response and the variability in the
response—tceevery sequence of a given length, giving us a
INTRODUCTION detailed characterization of the neural code for such sequences.
By varying this length, we examined how much of the stimulus
To understand the coding of information by neurons, it isad to be specified to maximize the precision of a neuron’s
important to quantify the variability in their responses. Wheresponse: e.g., if the neuron’s response was influenced by the
this variability is driven by changes in the stimulus, the nedast 10 frames and only 5 frames were specified, then the
rons can use this to distinguish between stimuli. On the oth@sponse would be averaged over the unspecified frames, caus-
hand, when this variability occurs in repeated responses to thg the neuron’s responses to appear more variable than they
same stimulus, it acts as noise that reduces the neurons’ would be if the stimulus were fully specified. The variability
tential capacity to code information. remaining when the stimulus was fully specified reflected the
The study of neuronal variability has recently seen a rebirtieuron’s intrinsic response variability.
of interest in association with the renewed use of information- It is common to characterize a cell’s response by its linear
theoretic techniques for analyzing neural coding (Bair 1998&mporal kernel, which—as computed from an M-sequence
Borst and Theunissen 1999; Buracas and Albright 1999; démulus and neglecting normalization (seerHobs)—is the
Ruyter van Steveninck et al. 1997; Meister and Berry 1998ifference between its mean response to a single bright frame
Rieke et al. 1997; Victor 1999). In the visual system, thand its mean response to a single dark frame. We found that
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average responses to a single bright or dark frame within aVe generated random frames using a binary M-sequence, which is
sequence showed Poisson-like spike count variability and teggsentially a stream of pseudorandom bits having some special prop-
poral dispersion over tens of milliseconds, and the kernel waiies (see following text). A bit value of 1 corresponded to a bright
correspondingly temporally broad. But by specifying more ¢f2me. and 0 corresponded to a dark frame.

. -~ i . . AN M-sequence of orderconsists of 2 — 1 bits. The full sequence
the stimulus—e.g., specifying eight consecutive frames t@ n be viewed as a collage of overlappiebit sequencesk = n,

response COUId. b_e_come far more precise, with SUb'PO'S%Q n from the list of all possible binary combinationskdbits. For
spike count variability and temporal precision of 1-2 ms. Thgample, fork = 2, the possible binary combinations are: (0) 00, (1)
information conveyed by the neuron correspondingly i1, (2) 10, and (3) 11. Thus a portion of the full sequence consisting
creased, containing as much as 3.5 bits/spike about longethe bits 0110100 can be decomposed as the overlapping combina-
stimulus sequences. We found that this information dependeuh of the sequences (1), (3), (2), (1), (2), (0). The same decompo-
on the specification of spike times down to 1-ms resolution asiion procedure can be applied for akyThe M-sequence has the
that the information in consecutive spikes showed little redufonvenient property that all subsequences of lekgth n randomly
dancy or synergy. Finally, we determined that the precisi@\ﬁ’f’far within the full sequence the same number of times, namely
obtained when multiple frames were specified could be large éarsogfﬂriegct?; e(g)xCBegé;Bg; tgfethailg-zteart(i)stsigglur?erézela(r)iiylecl)?gi??e M-
t.’Ut .not entlrely_, explained if th? spike rate arose from guence, it is an excellent tool for the investigation of a cell’s neural
filtering of the stimulus by the cell’s temporal kernel followe

de.
by thresholding, along with imposition of a postspike refrace

tory period. .
Some of this work was previously presented in abstract fmﬁpalyas
(Liu et al. 2000; Tzonev et al. 1997). Cells were selected for analysis based on the following criteria. To
ensure single cell isolation, we chose only cells with clearly isolated
METHODS clusters in the various two-dimensional projections of the four-elec-

trode amplitude space; clusters with clipped responses due to ampli-
Experiments fier saturation were avoided. To achieve reasonable estimates of the
information rates,=1,000 spikes were required during the whole
We performed experiments on adult cats under a protocol approvg@inulus. Finally, only cells witron or ofr linear temporal kernels
by the University of California, San Francisco Committee on Animgkee following text) were studied, since this formed the basis for the
Research. Cats were initially anesthetized with isoflurane (1-5%), afitinition of response events. In total, 12 cello 8 oFf) in one cat
placed on a feedback-controlled heating pad to maintain body teflere studied at five contrast levels—80% (9 cells), 40% (6 cells),
perature at 37.5-38°C. We established an intravenous line and the® (3 cells), 14% (1 cell), and 6% (2 cells)—yielding a total of 21
after maintained anesthesia via thiopental sodium or pentobarbiigls.
sodium (the latter was given once anesthesia was stable). The heart
rate, respiratory rate, core temperaturg s@turation, expiratory C9
and lung pressure were all continually monitored. After performing
traCheOtomy, the animal was respirated with nitrous oxide in a 1:1T0 Study the precision of Spikes7 we attempted to C|assify each
ratio with oxygen. We performed a craniotomy, and then paralyzggHividual spike as part of a spike event evoked in response to a
the animal by infusing gallamine (10 mgkg " - h™* in lactated specific sequence &fframes. This was done by applying the follow-
dextrose Ringers). The electroencephalogram (EEG) was subggr algorithm, described here for awrr cell. We determined the
quently monitored continuously. We reflected the optic disk onto #erage stimulus before a spike, and defined the cell's mean condi-
white background using a fiber optic light source, and inserted contgighal latency (conditioned on a spike) as the time to the zero-crossing
lenses to focus the eyes at a distance of 35-40 cm. between peak and trough in the spike-triggered-average stimulus
We recorded extracellularly using tetrodes (Gray et al. 1995) agustrated in Fig. 1). Then, as shown in Fig. 2, for each spike in the
vanced through a guide tube inserted to within a few millimeters @fin, we looked back in time from the spike by the mean conditional
the LGN. The LGN was recognized by the small (relative to surroungatency and found the closestr transition (bright frame followed by
ing structures) and monocular visual receptive fields, and by the matgdyk frame) within a window of-1.5 frames; the spike was assigned
of topography across repeated penetrations to published accoydtshat transition. If there was no such transition, the spike was
(Sanderson 1971). The electrodes were constructed fropni8iam  ynclassified. We characterized sequences by their lekgthd the
nickel chromium insulated wire~20 wm including the insulation). |gcationt of the transition within the sequence (eg.= 8,t = 3
The tips were beveled and gold-plated, and the typical impedance Waseled an 8-frame sequence with a transition at the onset of the 3rd
in the range of 0.8—1.5 KA. Tetrode signals were amplified and theframe—that is, between the 4th and 3rd frames, where the 1st frame
digitized at 20 or 30 kHz with 12-bit resolution. The digitized datgyas the latest in time). For a given choicekafndt, a given transition
were continuously streamed to the disk. To separate signals frofis uniquely associated with a surrounding sequence, and the spike
different neurons, we sorted based on the spike amplitudes measigd assigned to that sequence. All spikes associated with the same
at the four tetrode wires. Clustering was done manually using dlﬁer@gquence were labeled as part of the same event. The percentage of

Response events and precision analysis

two-dimensional projections of the four-dimensional space. total spikes that were unclassified served as a measure of the level of
“spontaneous” activity that was not driven by transitions.
Stimulus Once the events were identified for a given choic& aihdt, the

probability that a specific sequence produced an event was computed
For visual stimulation, sequences of full-field bright and darky dividing the number of times some spike resporsg épike) was

frames were presented on a computer monitor at the rate of 120 ldatained for that sequence, by the total number of presentations of that
yielding a frame duration df ~ 8.3 ms. Each frame varied randomlysequence (i.e., X 2** ¥ times). This quantity was called the event
between bright or dark, with a photopic mean luminance; contrgstobability.
[measured asL(— D)/(L + D) whereL andD were the luminances We assessed the timing precision of the first spike in an event for
of bright and dark frames, respectively] for each full sequence waach sequence consisting of a specified number of frakjesith
chosen from 6, 14, 20, 40, or 80%. transition locationt. A distribution for the times to the first spike in an
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1.0 T T T T very few assumptions about the coding strategy. This method relies on
Mean the fact that the mutual information between the stimulus and re-
conditional sponse can be written as the difference of two spike train entropies.
latency — First, the maximum amount of information that a spike train response
% can provide about the stimulus is just given by the entropy of the
spike train itself H(?R). This is estimated from the probability distri-
bution of spike responses over the course of the whole experiment
without specific knowledge of the stimulus. Second, the information
the spike train carries about the stimulus is reduced from this maxi-
mum by the degree to which there is variability or noisen the
repeated responses to an identical stimulus, as measured by the spike
train noise entropyH(N). This is estimated from the probability
0 distribution of spike responses to multiple, identical presentations of
the same stimulus, averaged over stimuli.
Time from spike (ms) With the M-sequence, responses to the repeated presentations of

Fic. 1. The spike-triggered-average stimulus and the temporal kernel for &Chk-frame stimulus sequence were easily obtained. For each oc-
orrcell. The vertical axis represents the stimulus luminance on a linear scdiglirence of a specifik-frame sequence, the response beginning at a
normalized and shifted so thatl represents the bright frame luminange-1  delay  (ranging from 0 to 130 ms) relative to the onset of the initial
represents the dark frame luminarizeand O represents the mean luminancdrame of the sequence was divided into bins of dizgusually 1 ms)

(L + D)/2. —, the spike-triggered average; - - -, the temporal kernel, obtainedntaining the number of spikes in each bin. These bins were com-
by normalizing (in the frequency domain) the spike-triggered average by thfhed to form spike “words” of lengtil = MAr, whereM was an
stimulus spectrum, up to a cutoff of 90 Hz (seer+ops). The temporal kemel nteger number of bins. For example, fdr = 3, the joining of three
represents the cell’s temporal receptive field: it is the linear filter that, thmn containing 2, 0, and 1 spikes, respectively, would yield the word

applied to the stimulus, best predicts the cell's response in the sense of | note that the absence of spikes in a bin can be informative. and
mean-square error. Both functions show a strong bright-to-dark transition:] ( p !

the stimulus~32 ms before the spike occurred. This was defined as the cell® contribution was included). _
mean conditional latency. We then computed the entropies for each choick, df, and At by

building the probability distribution of these words—across the whole

event (of 1 or more spikes) was obtained from the numerous preseéxperiment forH, .. (%) and across the multiple repeats of itte
tations of a particulak-frame sequence. A jackknife estimate of th&-frame stimulus sequence ¢ 1,..., 2) at time-shift = for
standard deviation of this first-spike time was used as the index of tHe-ka-7(N)- Note that the location of a transition, within the
timing precision (Thomson and Chave 1991), and the error was takefiame sequence was now irrelevant and not specified; instead all
as the square root of its variance. We approximated the overgirame sequences contributed equally to this analysis. Bathd A~
first-spike timing jitter for a giverk andt by the median standard Were varied to obtain estimates of the entropy on different time scales.
deviation across ak-frame sequences with transition locatioThe For a givenT and Ar, the average information about ttkeframe
timing jitter was then studied as a function lofindt. sequence that began at timéefore a response word was then given
To determine whether the timing jitter was correlated with the eveBY Hicar (%) — (H; ;i a-7(N))i, where(H(N));, was the average noise
probability, we computed the Spearman rank-order correlation (Pr@¥ropy across ak-frame stimulus sequences (i.e., average oyer
etal. 1992, p. 639—642) for eight-frame sequences that ka8, the We assigned the information abdkiframe sequences, for the given
transition position that generally resulted in the smallest timing jittef. and A7, as the maximum information acrosgsee following text).
In several cases, there were sequences with very small event prob&arst though, for each combination @f Ar, k, andr, we corrected
bilities and hence very few event responses from which to estimate fRe finite-data errors. This was done by computing the mutual infor-
timing jitter. This could result in particularly large or particularlymation for different partitions of the data: the whole data set, and the
small jitters. To test whether this may have biased our estimate of fi¢erage over each half of the set, over each third, and each fourth.
correlation, we calculated the Spearman rank-order correlation undé#s average information was then plotted as a function of the number
two conditions: using all sequences and using only those sequengBartitionsN, and fit to the functional forml, = I, + 1,/N + 1,/N?
with event probabilities above a minimum probability. This minimungStrong et al. 1998b), therefore represented the true information rate
probab|||ty was arbitrar”y taken to be\‘]//ﬁl whereN is the number extracted from the limit of infinite data for a giVéﬁ, At, k, and 7.

0.5

0.0

Average stimulus

.0.5 |- — Spike-trig-avg
- - - Temporal kernel

1.0 | | | |
-100 -80 60 40 20

of presentations per sequenece= 128 for 8-frame sequences). Note, however, that when the amount of the data were too small, even
We also assessed the spike count precision of the events for each

sequence of a specifigdandt. In this case, we generated a histogram

of the number of spikes in the event responses for each sequence,

allowing for the possibility of no spikes. A jacknife estimate of the
variance of that distribution was used as the index of that sequence’s
count precision. The error was again taken as the square root of the Frames _
variance of this estimate. To summarize the results across all se-
qguences of length with a givent, the Fano factor (variance divided I |
by the mean) for each sequence was also estimated by jacknife. The |
median spike count Fano factor was then used to show the dependence L |
of spike count precision ok for a givent. "

P P g Spikes ! ! |,

| Bl

Information analysis Fic. 2. Algorithm for assigning a spike to aFrtransition. For each spike

. S . . . .. in, the spike train, look back in time by the mean conditional lateth¢ynd
The information in the spike train about the stimulus was quantlf"ﬁd the closesbrr transition within a+1.5 frame window. In this case the

using the “direct” method (de Ruyter van Steveninck et al. 199 icated spike is assigned to ther transition indicated by the arrow. 1
Strong et al. 1998a,b). This method estimates the mutual informatigi: iransition is present within the window, the one closedt s taken. Note

between stimulus and response “directly” from the spike trains witkhat multiple spikes falling within & +1.5 frame window of a transition can
out regard to the details of the stimulus/response relationship and withassigned to the same transition and thus be part of the same spike event.
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this correction failed. Empirically, this occurred when the ratid of

to |, became large. We used a ratio 0k2L0~ 2 as the border between
sufficient and insufficient data and show results only for cases in
which data were sulfficient by this criterion. In practice, the corrections
for finite data were typically tiny, and the point of this procedure was
primarily to screen out cases (e.g., too-latger too-largeT) for
which data were insufficient.

Given the corrected information, we assigned the information about 5.75 ~.0 _
k-frame sequences as follows. For the gikerT, and Ar, we deter- ’ R
mined ther that maximized the information. The informatidnwas I i I i ~9
then assigned to be the average information over the bins within 0 1 2 3 4
ms around this maximum. (We chose this to correspond to about a Inverse data fraction
frame width, so that averaging smoothed out any frame-related arti-
facts.) The information rate of the spike train, in units of bits/time, was
I/(MAT). We converted this to units of bits/spikg, by dividing by the
neuron’s average spike rate, assessed over the entire two-M-se-
guence stimulust, = 1/(rMA7).

This method worked well only for relatively short response words.
Long response words required long stimulus sequences to minimize
the randomizing effect of different stimulus contexts on early or late
portions of the response word. However, since each sequence repeated A Joint entropy
2 X 2% K times, ask increased, our estimate of the entropies de H 1 1 1 i =
graded due to sampling problems. Thus to consider very long response 0 20 40 60 80 100 120
words, we employed a different strategy: we estimatemhar bound
on the informgtio)llw carried by the spigg train about the stimulus by 1/(Word length) (1/s)
applying the direct method to the two repeats of the full M-sequenceric. 3. Estimate of the lower bound to the average information per spike
Assuming that the only thing in common between the two presen‘gﬁtween the stimulus and words of spikés.the entropy of 48 ms words
tions of the M-sequence was the stimulus itself and that therefore #iéhin the spike train, binned in 1-ms bins, scaled with data fraction in a
noise in the two cases were uncorrelated, the information that draatrollable fashlonB: as the inverse length of the spike words qecreasgd, thg
responsed, carried about the Second respon, |{7, ) _ SToKnofdela (o fed recording ength) decreased and e shge <pie e
should be ?"OWe’ bound to the information between either resﬁ’ane~50 ms. An infinite word length extrapolation for the entropy rates was
and the stimulus/, IAT,T_(SJ’%) (5“’0”9 et al. 1998b). We took eaChobtained by fitting to the region where the data were sufficient.
response to be the spike train generated by each full M-sequence,
minus the first and last 200 ms. We then computed each spike traif(, as follows. We definedt) = A, ([f(t) — 6] )P, where K+ = x, x>
entropy,H,, +(®), i = 1, 2, for words of lengthTl, and the joint 0; = 0, otherwisep = 1 for a linear function ang = 2 for a quadratic
entropy, H, . +(%,,%,), for the co-occurrence of words in the twofunction; andA, was chosen to make the mean réf) equal to the
spike trains. These were computed from the probability distributioadserved mean firing rate. The value of the threshldias fit as
for words by using overlapping intervals (incremented &y, to  described in the following text. Finally, spikes were generated as a
increase the effective number of samples). To correct for finite-dataisson process from these rates, perhaps along with a refractory period,
errors, data size scaling was applied in this case directly to the entregywill be described in the following text.
estimations (rather than to the mutual information as in the data sizerhe temporal kernel was determined as the spike-triggered-average
scaling described above); an example is shown in FAgT®e mutual stimulus, divided by the autocorrelation (or in Fourier space, the

o
o]
[4)]

1

’
1

Entropy (bits/spk) >

o Train 1 entropy -
O Train 2 entropy

Entropy (bits/spk) T3

O N A~ OO ®

information between the two responses was then power spectrum) of the M-sequence stimulus (the power in the M-
sequence at frequendyis proportional to [sin {/r;)/f]%, wherer; =
Lanr (Re,P2) = Hazr (Re) + Haer(Ro) — Harr (R, %) (1) 120 Hz is the frame rate). This division yields the linear filter that,

. . applied to the stimulus, gives the best estimate of the response in the
In general, the dependence of the information on word lefigar nse of least mean-square error (Rieke et al. 1997). The spike-

a given b|_n S'ZEA.T was smaII._ Hence, to summarize _the dependeni‘?ggered average and temporal kernel for one cell can be seen in Fig.

for a particular bin size, the infinite-word-length limit was taken bYL The division is done in Fourier space, where it simplifies to a

obtaining a linear fit to the plots of the (infinite data limit) entropie§ S S ; .
; . e . b frequency-by-frequency division; otherwise it would involve multi-
versus 1T, and using they intercept as the (infinite word limit) Iy?ng onye r¥1atri(>q< by t)klle inverse of another matrix. However, one

entropy rates in the calculation of the information rate. The fit w . Lo A .
performed only over the range of TLivhere sufficient data were ;;es not want to continue dividing up to arbitrarily high frequencies

available to accurately estimate the entropy rates, as illustrated in ﬁé" ere th_e power in the s_tlmulus approaches ZEro, as this will just
3B. In practice,T's ranged from 8 to 48 ms. Finally, the information plify high-frequency noise. We chose to do the division up to some
pe; second frc;m words of spikes was con;/erted ir,1t0 the informatigHtOﬁ frequency, and to set all power abpve that cutoff frequency to
per spike by dividing by the mean spike rate across the whd ro. To choose a cutoff frequency, we t_rled cutoffs from 75to0 1_00 Hz
experiment N 5-Hz steps. For each c_utoff, we applied the corresp_ondlng filter to
) the M sequence to obtain the outpi(t), converted this to a rate
functionr(t) as described in the preceding text usmg 1, and chose
Models the thresholdd as that which minimized the mean-square error dif-
ference between the predicted Poisson rate function and the eight-
We constructed quasi-linear threshold models of driven LGN spikifgame PSTH for the actual data. We then chose the cutoff frequency
activity to investigate whether the observed precision could be explairtedt gave the least mean-square error; this best cutoff was 90 Hz. This
by simple mechanisms. All models convolved the full M-sequence stitkernel was used subsequently in all models to draw actual spikes for
ulus, binned at one-sixth the frame period, with the cell’s temporal kerr@STH comparison (see following text).
to generate a firing functiori(t) (linear part). These responses were The conversion fron(t) to spikes was as follows. We interpolated
thresholded and perhaps squared (nonlinear part) to generate firing ngt@go achieve a temporal resolution of 1/60 of a frame (the spike-
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triggered average and temporal kernel had been computed in bingefirly 7,000 spikes. We use this cell to illustrate the main
1/6 of a frame or-1.39 ms). For the simple Poisson case, spikes wefgsults of our analysis. A spike at time O for this cell was
then generated in each time ki with probabilityr(t)At, usingAt = | enerally preceded by a transition from bright to da&2 ms

139 ps. For the case of a Poisson process with a refractory pe“o.‘gé‘rlier. This time delay was referred to as the cell's mean
free firing rate g (Berry and Meister 1998), was generated assuming,  yitiona latency. Figure 1 also illustrates the cell's temporal
a specific refractory periody, by taking q(t) = r(h/[1 — rOul kernel (seemeTHops), which represents the cell's temporal

Spikes were then drawn as in the Poisson case but wgihgather . - o
than r(t). In the case of only an absolute refractory period, thggceptive field and has the same 32 ms mean conditional

probability of a spike was set to zero fprms after each spike. We latency; we will return to this later.

also tried adding an exponential recovery after the absolute refractoryAn initial 1,200 frames (10 s) from the beginning of the M-

period, settingu = paps + e Whereu,cwas the absolute refrac sequence were presented to adapt the cells to the stimulus

tory period andu,, Was the exponential recovery of the probabilityensemble before showing the M-sequences used in data anal-

from zero up tog(t). This implementation for a relative refractoryysis. After the conditioning, two repeats of the full M-sequence

period is reasonable whan,, is smaller than the characteristic timeygre displayed without delay. A total of 2 214-k repetitions

over which the firing rate remains.relatively constant. of eachk-frame sequencek(= 14) occurred, e.g., 128 repeats
For each of the models, an optimal threshold and refractory Pt cach eight-frame sequence. Because of this convenient

od(s) (if applicable) were selected simultaneously to minimize the b it tural to f o th t of
mean-square error between the real data and the model of the segrﬁ%ﬂper Yy, It was natural 10 Tocus on responses 1o the set o
-frame sequences for differekt

of the eight-frame PSTHSs defined by the4&.39 ms bins before and
the 7 bins after the end of the eight-frame sequence. This was done by

trying every threshold from 1 to 5 in steps of 0.2, (if applicable)ean response: the PSTH matrix
absolute refractory periods from 1 to 4 ms and relative refractory

periods from 0.5 to 4 ms in steps of 0.5 ms for whigft) remained ~ The M-sequence stimulus presented frames of random stim-
positive, and then selecting the combination of threshold and refrafli in series rather than in isolation. To obtain an average
tory periods that gave the least mean-square error. These ranges 5@%"%0”56 to a specific stimulus sequence, we extracted the
rei?feomngﬂfthb:?;‘#gg el)r:p{g)orega%f)ftf\?l;[sp;?;‘mc;r'zg:n#we Fr’]?erg:]nﬁ:ﬁ]rg?fnﬂi idual spike responses to the multiple presentations of that
over the whole stimulus in the model was typically matched to withi quence in .the _fuII M sequence. Consider f|r§t the case of
a few percent of the data’s mean. one-frame st|mu!|. The average response to single brlght or
dark frames of stimuli was generated in the form of a matrix of
PSTHSs (Fig. 4). The shading in each 1-ms bin corresponds to
the total number of spikes from all presentations of this se-
Full-frame, binary, 14-bit M-sequence stimuli were preguence at that time relative to the frame onset. Note that there
sented at different contrast levels. In general, this stimulusas a nonzero spike rate even at the time origin that was nearly
drove cells in the LGN well. Average spike rates across alie same for both bright and dark frames. This reflects the fact
cells and stimulus conditions ranged from 4.6 to 25.3 Hthat at early times, the spikes were responses to earlier frames
Neural responses were usually triggered by transitions framwer which we had averaged. The response to the particular
either bright to dark frameso€r cell), or vice versadn cell); bright or dark frame was most clear at32 ms as expected
we referred to two-frame sequences of bright/dark or darkbm the cell's mean conditional latency.
bright as anorr or on transition, respectively. Each cell's One advantage of visualizing a PSTH matrix is in the ability
polarity was determined by reverse correlating the spike traim display the neuron’s average responses to stimuli more
with the M-sequence stimulus. Figure 1 presents the spilkeemplex than just a single frame, as shown in Fig. 5 for
triggered-average stimulus for one of our gawdcells (cell 4, two-frame sequences. This clearly shows that spikes tended to
80% contrast) that had a strongly driven response producibg generated near the mean conditional latency in response to

RESULTS

1

(zH) are) BYIdS

0 10 20 30 40 50 60
Time from If1 (ms)

FIG. 4. Peristimulus time histogram (PSTH) matrixc#ll 4's spike responses to 1-frame sequences (i.e., to bright frames or
dark frames). Responses were histogrammed in 1-ms bins relative to time 0, defined as the time of onset of the stimulus frame, f1.
The stimulus itself is illustrated to the left of time 0 (gray represents a bright frame, black represents a dark frame). For 1-frame
sequences, virtually no spikes were observed in response to a bright frame (stimulus 1) at approximately a mean conditional latency
(32 ms) from its onset, while a large number of spikes were seen at a similar time after a dark stimulus (stimulus 0). Responses
to stimulus 0 at-32 ms largely represent responses to the 1/2 of cases in which the frame preceding it was a bright frame, creating
an ofr transition. Similarly, many spikes are seen in response to stimutug frame later {40 ms), representing responses to
the 1/2 of cases in which the bright frame was followed by a dark frame. Conventions for this and future PSTH-matrix figures: time
0 is defined relative to the sequence as shown at the top of the matrix: e.g., here time 0 is the time of onset of the single frame of
the stimulus, f1; for multiple-frame stimuli, the last frame in time would be f1, the preceding frame f2, etc., sowuatld be
thekth frame in reverse temporal order. The stimulus frame sequence is shown to the left of time 0 in temporal sequence from left
to right (left being earlier in time), with dark representing a dark frame and gray representing a bright frame.
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Fic. 5. PSTH matrix ofcell 4's spike re-

© sponses to 2-frame sequences, histogrammed in
g‘-‘ 1-ms bins relative to the onset of frame f1. For
2 § 2-frame sequences, increased spiking was ob-
served around the mean conditional latency from
g.. anorrtransition (stimulus sequence 2). Note that
1 —~ averaging the 2-frame responses over the left
ﬁ frame (f2) for a given value of the right frame
~  (f1) yields the one-frame responses for f1: e.g.,
0 the average of responses to stimuli 1 and 3 gives

the response to stimulus 1 in Fig. 4.

0 10 20 30 40 50 60
Time from f2If1 (ms)

an orr transition (stimulus 2), whereas spiking was clearly Moreover, the spikes in this band were noticeably isolated in

suppressed near the mean conditional latency bynamansi- time on both sides by regions of virtually no spikes, suggesting

tion (stimulus 1). Note that the response to a dark frantkat there was a high degree of temporal precision in the

(stimulus 0 in Fig. 4) was now broken down according toesponse when seven frames of the stimulus were specified. To

whether the preceding frame was dark or bright (stimuli O arekamine this, each spike should ideally be classified as part of

2, respectively, in Fig. 5). a response to a particular sequence. In the PSTH matrix
Figure 6 displays the PSTH matrix (with 1-ms time bins) fothough, each spike occurred multiple times, each time associ-

the response to seven-frame sequences, sorted according tatee with a different time frame and sequence. Hence, echoes

rightmost two frames, f1 and f2 (we usually numbered framed the mainorr response appeared in the other quadrants of the

in ak-frame sequence consecutively as = 1, ...,k,with PSTH matrix where awrr transition occurred earlier in the

f1 the latest in time andkfthe earliest). This grouped togethesequence.

all responses to sequences with @ transition in the most

recent two frames. As expected, a large vertical band of spik€Sant classification

centered at-32 ms appeared in response to tire transition.

One striking feature was the slight slant in time of tbre- To classify a spike to a unique sequence, a search was

response band near 32 ms. Qualitatively, for this cell, the tinperformed to find therr transition that was most likely to be

to the first spike was correlated with the amount of time thesponsible for a given spike. All spikes classified to the same

stimulus had been bright prior to the final transition to dark: theansition were then grouped together as the spike “event” in

longer this time, the earlier the occurrence of the first spike response to the sequence containing that transitionMsee

the response. ops). In practice, this algorithm reproduced the event structure

FIG. 6. PSTH matrix ofcell 4's spike responses to
7-frame sequences, histogrammed in 1-ms bins relative
to the onset of frame f1 (maximum spike rate of 535
Hz). The stimuli were sorted beginning with 2, f1, f3,
f4,..., f7, revealing an isolated band of spikes ap-
proximately a mean conditional latency (32 ms) from
anorrtransition in f2—f1 (2nd quadrant). Similar bands
of spikes were observed at earlier times in response to
different stimulus sequences; these “spike echos” were
simply responses to earlieFr transitions.

Time from f2If1 (ms)
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18 s 12 f1

FIG. 7. PSTH matrix ofcell 4's spike responses to
8-frame sequences containing @Fr transition between
frames f2 and f1, histogrammed in 1-ms bins relative to
o - the onset of stimulus frame f1 (maximum spike rate of
| B | 688 Hz).

Time from f2If1 (ms)

quite well, as can be seen from the comparison of Figs. 7 afidof 21 trials had bands of increased spiking, but these were
8. These show the PSTH matrix and the extracted unique spit@ well isolated) or when spiking was more indiscriminate (6
events, respectively, for the 1/4 of eight-frame sequences ha¥-21 trials had poorly distinguishable bands), the unclassified
ing an orr transition in their final two frames. The band ofpercentage tended to be larger (10 of these 11 trials had
spikes near 32 ms was clearly reproduced in the spike eventsclassified percentages above 5%). The one exception was a
Virtually all spikes in the train were accounted for by thi$% contrast trial for arorr cell with a weak linear kernel-its
technique; only 1.8% of the spikes were unclassified. (Nogwents were not well isolated, but its unclassified percentage
that spikes placed at random would show 5/16, or 31%, uwas nevertheless low (3.5%).
classified.) For each sequence, we definedet&nt probabilityto be the

In general, for the group data across all cells, 10 of 21 trigiercentage of its occurrences that evoked an event of one or
had unclassified percentage®%, while for the remaining 11 more spikes.
trials this was larger than 5%. Qualitatively, the unclassified
percentage was correlated with the degree to which spikes w
locked to the stimulus as evidenced by visual isolation
spikes around the mean conditional latency in the PSTH n&rRIKE TIMING PRECISION. Using the binaryk-frame sequences
trix. When the spikes around the mean conditional latenty characterize the stimulus, and the spike events to character-
could be visibly isolated (10 of 21 trials), the algorithm apize the response, we turn to the next issue of this paper: a study
peared to yield fairly low unclassified percentages (9 of thosé the reliability and precision of responses and their depen-
10 trials). The one exception was a 40% contrast trial fossan dence on the stimulus. The timing precision of these events
cell in which the events in response to am transition were was examined by determining the jitter in the time of the first
fairly well isolated yet the unclassified percentage was nevepike in the events associated with a particular sequence. This
theless high (26%), probably because spikes were also pishown in Fig. @ for the only possible two-frame sequence
duced without a transition when the stimulus had been brighith an orr transition. This sequence generated a spike re-
for several frames. In cases when locking was evident but pamonse 49% of the time, and the time of the first spike had a

re I
esponse variability

f1

Fic. 8. Cell 4's extracted spike event responses to
8-frame sequences containing anF transition be-
tween frames f2 and f1, histogrammed in 1-ms bins
relative to the onset of frame f1. The quality of the
algorithm for associating spikes with a particular se-
quence can be judged by comparing this against the
PSTH matrix for 8-frame sequences in Fig. 7 (or more
objectively by determining the percentage of unclas-
sified spikes, see text).

Time from f2If1 (ms)
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>

to imprecise specification of the stimulus history. In particular,
the average first spike times differed significantly for different
eight frame sequences, decreasing with increasing event prob-
3k o _ ability, as plotted in Fig. @. This naturally broadened the
width of the distribution of first spike times when the responses
to different stimulus sequences were averaged together.
Because the timing precision clearly varied with the exact
stimulus sequence, we wanted a more generic measure of the

Std deviation (ms)
N
T
]

ok | [ L1 overall variability of the response for a given level of stimulus
00 02 04 06 08 1.0 specification. We selected the median, over sequences, of the
Event probability standard deviation of the time to the first spike in an event as

a robust index for this purpose. Figure 10 plots this median
standard deviation as a function of the number of frames
4H J T ] I H specified. The upper and lower interquartile ranges are also
depicted, showing that in some cases, the distribution of stan-
3 7] dard deviations is clearly asymmetric. Three curves are shown,

§ § corresponding to the location within the sequence ofdke
é%m % §§§§ transition. The f2—f1 curveofr transition between f1 and f2)
@ 5
1 ] i |

vy}

indicates that the median precision improved until three to four
frames before the two frames encompassingotfrgransition

Std deviation (ms)
N
T

Ot 1 were specified (5—6 total frames). When four frames before the
00 02 04 06 08 10 transition were specified, specifying additional frames after the
Event probability transition (7 frames on the f3—f2 curve or 8 frames on the
C f4—f3 curve) did not substantially alter the median precision,
B 40 FF | — | | suggesting that these frames had little effect on the overall
S O timing precision. This plateau in the precision likely reflected
£E 1L o i gp p p y
OE) 36 CQOQOO@ - the intrinsic variability of the cell because further stimulus
= r ° @8 . specification did not further increase the precision. In the group
2% Loy oo, |
% o8 |- %OO% 4 FF T T T =
E 24 | | | | ¢ E falf2 -+ -
00 02 04 06 08 1.0 p= & g/ "
Event probability -% sl AN f41f3
FIc. 9. Standard deviation of the distribution of times to the 1st spike in an .usg ; \ *z]' )
event for a given sequence plotted against the probability that an event was - \ \
evoked for that sequencA: when only the 2 frames of therr transition were o 2111 % v
specified, the single 2-frame sequence had a standard deviation of 3 28t 0 ' k5 I
ms an_d an event probak_)ility of 49%: when a total of 8 frames were specified, g oL b A b 4 -4
including theoFr transition between f2 and f1, all sequences had sub-3 ms = N N
standard deviations, with a median standard deviation of .2803 ms. The Q T S
median sequence is shown as a filled cir@emean first-spike times plotted é I b %. i
against the event probability fmase B. 7] T’ i Y
standard deviation of 3.25 0.04 ms. Because the responses to g 1 18 f2f1 f21f1
all possible combinations of stimulus frames before and after =
the two frames of the transition were averaged together, this 3 [(TTTT e f3lf2
standard deviation represented the precision achieved by the p= fa4lf
two frames of theorr transition alone, when the other frames 0 (LT T M 11413
were unspecified. Its value was already less than the standard 'g ; L é 3_
deviation expected (7.2 ms) if the first spike times were dis- i ) )
tributed uniformly over the three-frame search window that Stimulus window size (frames)
defined events. FiG. 10. Median SD, across ak-frame sequences, of the distribution of

When eight frames of the stimulus were specified, with dimes to the 1st spike, plotted against the number of frames in the stimulus

OFF transition Occurring between frames 2 and f1 (WhiCh W@mdow, k. The_3 curves correqur_ld to different locations of detransition _
“ e e.g., f2—f1 indicated therr transition was between frames f1 (the latest in

_denOte QS an “f2-f1 'Fransm_on )’_ everY sequence ms SD time) and f2. The upper and lower interquartile ranges for each point indicate
in the time to the first spike, including sequences with bothe width of the distribution of SDs across sequences. When no frames were
high and low event probability (Fig.B). The median across specified after the transition (curve f2—1), the median SD leveled offia8
sequences of this standard deviation was 1:28).13 ms s once > fotal frames were specifiec. When 1 or 2 frames were specfied
(median square root of the jacknife Varianc.e for the medi —ir fra?ngznbséflgrné th?a gul‘r;/;niessm;%goinéaessin% theer{?an’silgoécsvg]rge preilmarﬁy
S_equef?_ce)- These results suggested tha_t a 5_|gn|f|ca_nt part ofdB&nsible for improving the timing precision. Note that the f3—f2 curve is
timing jitter in response to two-frame stimuli was simply dueffset to the right by 0.1 frame for clarity.
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data, the precision of all trials witht5% unclassified percent- (1 cell at 40% contrast, another at 80% contrast) had high
age (with the exception of a 6% contrast trial) improved withnclassified percentages (26 and 22%, respectively) but nev-
increased specification of the frames before the transition; theheless had small median standard deviations (:97.06
median standard deviation decreased on average ky #3% and 2.28+ 0.13 ms, respectively). The remaining nine trials
(n = 9) from the case where only two frames were specified that had>5% unclassified spikes clustered a#.01 + 0.58
the case where eight frames were specified withother orF  ms. Many of these trials were less well driven, as evidenced by
transition between frames f4 and f3. When all trials wengeir generally lower firing rate, as shown in Fig BLBecause
considered regardless of percentage unclassified, a decreashisfgroup of trials often responded more diffusely in time,
31+ 18% ( = 21) was found on average. _ making classification of spikes difficult, their poorer precision
Figure 11 plots the dependence of the median standayghs not surprising. However, given that their precision was
deviation of the time to first spike on the percentage of unclage|l below the 7.2 ms expected from random placement of
sified spikes across the population of cells, for eight-framgikes, it seems likely that this reflected a true property of the
sequences with f4—f3 transitions. The cluster of trials havingis rather than an artifact of the classification method.
unclassified percentagess% clearly exhibited high timing  The timing precision showed only weak dependence on the
precision (with 1 exception for a 6% contrast trial)—mean Qfyent probability, that is, on the reliability with which a se-
1.56+ 0.39 (SD) msif = 9, excluding the outlier). Two trials qyence evoked a response. Within the group data, the Spear-
man rank-order correlation was statistically significalat<t
A 0.05) when both all of the data and part of the data were
| ' I I 1= analyzed (seevetHops) in only 8 of 21 trials. It was not
80% contrast significant for both conditions in another 7 of 21 trials. In the
40% contrast —_ remaining six trials, the significance level changed between the
20:/° contrast two conditions. The fact that 13 of 21 trials showed no clear
14% contrast correlation suggested that the dependence of first-spike-time
6% contrast ] standard deviation on event probability was not strong. That is,
the temporal precision of response was not simply a result of a
“strong” stimulus: even responses that were infrequently
evoked could nonetheless be evoked at fairly precise times
when they did occur. Hence, reliability and timing precision
—] were not strongly coupled.

10 fF

earmeo _|

Median std deviation (ms)

SPIKE COUNT PRECISION. The timing precision analysis fo-
ol | | I | | [ cused on how the stimulus affected the jitter of a single spike
0.00 0.05 0.10 0.15 0.20 025 030 (namely the 1st spike in an event). To study the precision of the
remaining spikes in an event, we analyzed the precision of the
Percentage unclassified number of spikes in the events evoked by a stimulus. This
B spike count precision was characterized by examining the
variance in the number of spikes per event versus the mean
number of spikes in an event. In the case of a Poisson process,
the variance is equal to the mean. At the other extreme, the
minimum possible variance for a discrete counting process
with a given mearm is obtained if the number of spikes in
every event is either ceilf) (the smallest intege= m) or
floor(m) (the largest integess m). This minimum variance
=] varies periodically with the mean, dropping to zero at each
integer and forming a scalloped curve between integers.
- Figure 1A plotscell 4's spike count variance for the single
two-frame orr sequence against its mean spike count. Also

Spike rate (Hz)

o1 | ] ] ] = shown are the line expected for a Poisson process and the
0.00 0.05 0.10 0.15 0.20 0.25 0.30 scalloped curve representing the minimum possible variance.
» The variance for this sequence clearly fell close to the Poisson

Percentage unclassified limit. When the stimulus history specification was expanded to

Fic. 11.  Group data (across all cells and contrasts) showing the behaviogdght frames, with therr transition between f2 and f1 (Fig.
the spike t.iming precision for trials having different unclassified spike pert2B), most of the sequences remained Poisson-like, but a few
centagesA: the median SD of the time to the 1st spike in an event tended H’egan to have sub-Poisson responses. However, if we consider
be lower for trials where fewer spikes were unclassified. Note however that 1n ht-f ith tloe L. b he f4
2 trials, the standard deviation was st#2 ms despite a high unclassified €/9Nt-frame sequences with tiegr transition between the
percentageB: there was no strong dependence of the firing rate on tf@nd f3 frames (Fig. 12), meaning that we specify two frames
unclassified percentage. All analyses were for 8-frame sequenceswith after the transition frames as well as four frames before, the
e oo s o 10 it oyt bdariance for amost all sequences was significanty fess than
o - . o L o
spond to cells having>5% of spikes unclassified. Lines connect point{)o!sson’ falllng In many cases CI.Ose to the ml.m.mum Va”ar!ce
corresponding to the same cell. Different contrast levels are distinguished [Bjit- These results were summarized by examining the_medlan
differently shaped points, as assigned in the key. across sequences of the Fano factor, which is the ratio of the
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the transition frames, however, the event probabilities diverged
15 - 1 T H so that many sequences produced events with nearly unit
probability, while other sequences produced events with very
1.0 - small probability. This reflected the fact that, for this cell, the
event produced by a transition from bright to dark (10) could
be suppressed by a subsequent transition back to bright (101).
On the other hand, if no subsequent transition occurred (100),
0.0 _f,.* 1 ' 1 an event was virtually always produced. This ocqgrred almost
' o ] 5 3 irrespective of what happened before thwr transition. The
) variance in spike count for each of the two cases (101 and 100)
Mean # of spikes could be small. However, by not specifying the frame after the
transition, as in the f2—f1 curve of Fig. 13, the two cases were
H averaged together, producing a large variance and a Fano
factor close to unity. Thus simply increasing the stimulus
- history was not always enough to obtain precise responses;
enough frames both before and after ¢letransition had to be
specified to maximize the precision (note that frames after the
transition are still within the causal range where the linear
kernel is sensitive to the stimulus).

In the group data, such large reductions in the spike count
Fano factor were not very common. Comparing the median
Fano factor for the two-frame case to the eight-frame, f4—f3
transition case, there was on average at221% ([ = 21)
15FF - 1 T H reduction across all trials. Considering only those trials with

unclassified percentagesb% yielded a 38+ 24% ( = 10)
4 reduction; trials with unclassified percentages%, 17 = 9%
ﬂ (n = 11). The Fano factor itself was generally around or below
05 mm ] 1 in nearly all cases, as shown in Fig. 14. No strong depen-
““ n dence (_)f the Fano factor on the unclassified percentage ap-
00 f 1 1 t + peared in the data, except that Fano factods5 occurred only
) in trials with <5% of spikes unclassified. Moreover, note that,
0 1 2 3 4 among the low-unclassified-percentage trials, good timing pre-
Mean # of spikes

Spike variance >

N

Spike variance W

IN +

1.0

Spike variance O

FIG. 12. Variance of the distribution of the number of spikes in each event 20 ! ! I H
in response to a stimulus sequence withogn transition, plotted against the -
mean number of spikes in an event for that sequeAcavhen only the 2 ( [
frames of theorr transition were specified, the single 2 frame sequence had a
variance nearly equal to its mean, consistent with a Poisson process for spiking 1.5 32 f4lf3 7]

(straight line).B: when a total of 8 frames were specified, including twe
transition between f2 and f1, most of the sequences still exhibited variances
close to their means, although a few sequences that evoked larger numbers of
spikes on average showed significantly sub-Poissonian varia@cegen 2
frames were specified after tleFr transition (8-frame sequences witiFr
transition between f4 and f3), however, most sequences displayed sub-Poisson
variances, with several sequences approaching the minimum-variance limit
imposed by the discreteness of the spikes (scalloped line).

9
1.0 /ﬁ§~§"\\€£\\ -
f21f1

S
(SN
1

Median spike count Fano factor

variance to the mean (Fig. 13). For an f2—f1 transition, the

Fano factor remained near the Poisson limit of one, regardless 0.0t | 1 |
of the number of frames specified before the transition. How- 0 2 4 6 8
ever, if one or two frames were specified after the transition Stimulus window size (frames)

frames (f3—f2 transition or f4—f3 transition, respectively), . . _

. . o 7’ FiIG. 13.  Median Fano factor (variance over mean) of the spike count, taken
then, the median Fano _factor fell dramatically with INCreasiNg}ross allk-frame sequences, plotted against the number of frames in the
sequence length, reaching a value of 0.316.037 (mediant  stimulus windowk. The 3 curves correspond to different specifications of the
square root of the jacknife variance for the median sequen(fj’gynes surrounding therr transition; labeling is the same as in Fig. 10. The

for eight-frame sequences with f4—f3 transition. This was YRPer and lower interquartile ranges for each point indicate the width of the
’ istribution of Fano factors across sequences. When no frames were specified

0 i . = : !
72% reduction from the two-frame case. . afterthe transition (f2—f1 curve), the median Fano factor stayed close to unity,
The marked suppression of the noise by the specificationtrd value expected for a Poisson process. By specifying 1 or 2 frames after the

the frames after the transition can be straightforwardly undewansition, the Fano factor was dramatically reduced with increasing stimulus
stood. Figure B shows that when no frames were specifieﬂi”dOW size, indicating that the frames after the 2 frames encompassing the

. ition were critical for improving the spike count precision. This was
after the transition, there was a cluster of sequences that llc{gggistent with a spike vetoing effect by the frames occurring after the

event probabilities near 50% regardless of how many framggsition. Note that the f3-f2 curve is offset to the right by 0.1 frame for
were specified into the past. Once one frame was specified abteity.
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« 25F 7 I I [ [ T A string of M such letters formed a response “word—Mr=

% 20 ¢ 1, the word was simply the number of spikes in a single bin.
S T ] Ideally, the choice of hin size should reflect the degree of
2 15 — temporal resolution in the code, while the word size should
i 10 % reflect the longest time scale of temporal correlations in the
s [ M 7 code. The timing precision analysis suggested that a reasonable
g 05 w, / - b!n size was~1 ms. In|t.|aIIy ignoring correlatlong bet'ween

= ool | | | | | | bins, we calculated the information abduframe stimuli by

considering only single-bin words at this resolution (Fig. 15).
0.00 0.05 0.10 015 020 025 0.30 The information grew with time from the onset of the stimulus
Percentage unclassified sequence, provided that further stimulus frames continued to

Fic. 14. Group data showing the behavior of the spike count precision f(t))re specified, up to at least nine frames. At this point, the

trials having different unclassified spike percentages. The median Fano fat%aXi_mum information was-3.5 bits/spike and appeared to be
could be less than one regardless of the percentage of unclassified spikesn@aring a plateau. The existence of a plateau was reasonable

the lowest factors<0.5) were seen only for small unclassified percentagessince a given response time bin should give little or no infor-
ation about stimulus frames that occurred far in the past. For
onger sequence& & 4), the information began to drop from
its peak at~24-26 ms after the onset of the last frame in the
sequence, or-16—18 ms after the onset of the first unspecified
frame. This suggests that 16—-18 ms was the minimum delay
The spike timing and count variability measures discusséat a frame to significantly influence the response. This was in
above gave some indication of the precision of LGN neurongugh agreement with our previous results that one and perhaps
How much information did this level of precision allow thetwo frames after the transition frames can influence the spike
cells to transmit? count by vetoing or allowing spikes induced by the transition;
To address this, we changed our analysis method. The pifethe response occurs 32 ms after the transition, then these
ceding analyses of variability depended on defining events tliemes would have onsetsl5 and 24 ms before the response
associated each spike with a unique sequence that evokedhét they influence.
This required specifying both sequence length and the locationWe also compared the maximal observed information rate of
within the sequence of the transition (because spikes we&® bits/spike to the cell's maximum possible information rate,
associated with transitions and these 2 facts uniquely linkad measured by the entropy of its spike train. Achieving this
transitions to sequences). For the information analysis, weaximum would imply that all of the cell's response variability
instead consideredll sequences of a given length, withou{as measured in single 1-ms bins) was used to encode the
regard for the presence of a transition, and simply examinstimulus. In fact, the coding efficiency, the ratio of the actual
the response at some fixed time interval after the initiation offormation coded to that which could possibly be encoded,
the sequence. was~51% (fork = 9), so that the cell transmitted information
We computed information using the direct method (serindividual 1-ms bins at a level that was within a factor of two
METHODS). We binned time into discrete units of sizer, of its limit.
typically 1 ms, and defined the “letters” of the response “al- We next examined the role of time resolution in information
phabet” as the number of spikes in a bin (0 or 1 for 1-ms bin®ncoding by varying the binwidth. We considered 8-ms words

cision did not necessarily imply good count precision (compa;
Fig. 11A to Fig. 14).

Information transmission

—_— s & s g FIG. 15. Average per spike information between
4FF T T T T T =] k-frame sequences and a single 1-ms bin at a time
relative to the onset of frame f1. Different curves
correspond to different numbers of frames in the
stimulus. The shape of the 1-frame case can be com-
pared with the PSTH matrix in Fig. 4, although note
the difference in notation and placement of the
frames. Approximately 20 ms after frame f1 was
shown, the information in the 1-frame case increased,
reaching a peak of 1 bit per spike &30 ms. This
corresponded to the time at which a spike only oc-
curred in response to a dark frame and virtually never
to a bright frame. In contrast;40 ms after the onset
of f1, a spike was much more likely to be associated
with a bright frame rather than a dark frame, yielding
i A% a second peak in the information. For larderthe
1+ {giﬁv (smoothed) maximum stimulus information (see

METHODS) began to level off near 3.5-3.6 bits/spike
(for 9- and 10-frame sequences). At early times,
10-frame sequences showed spurious information

Number of
frames
e 10

e 000
=N

Information (bits/spk)

) ’ due to data insufficiency; this did not affect the peak
o 20N informations for 10-frame sequences because the
0 20 probability distribution for words at those times was

Time from stimulus onset (ms) completely different from that near the peak.
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of the spike train, and binned these words using either 1-, #agre was a diminishing return as the noise became a propor-
4-, or 8-ms resolution. If the precise timing of the spikes dionately larger contributor to the cell’s increased variability.
these resolutions within the word were important for transmit-

ting information, then we expected more information at smallgfedundancy or synergy in coding

bins than larger bins. Finer resolution increases the possible

information the spike train can code; if the actual information Given that a temporal resolution down to 1 ms was useful,
coded also grows, then the coding efficiency would not signfinother important question to address is the manner in which
icantly change with increasing resolution. On the other handPgtterns of spikes in these bins contributed to information
fall-off of the coding efficiency would indicate that the in_transmlssmn. Three possibilities exist: different 1-ms bins may

Lo ; : ion. \fade information independently; they may encode information
r resolution is not bein t information. . ' . .
creased resolution IS not being used to code informatio edundantly, so thd#l-bin words code less information thah

computed maximum information rates for eight-frame s imes the one-bin-word information; or they may interact syn-
quences to ensure that there were sufficient repeats of e %etically so thaM-bin words code morexnhamytimes they
sequence to allow us to estimate the information for multiplet e iy \vord information. Note that the degree of redundancy
bin response words. The information rate increased from gsynergy may change witM—for some word sizes, the
bits per spike at 8-ms bins to 3.1 bits per spike at 2-ms bins;&yonses may be more redundant, whereas for other word
29% increase (Fig. 9, while the spike train entropy in- gjzes they may become synergetic.
creased by 36% over the same range. That is, 0.29/0.86% e investigated the degree of synergy and redundancy in the
of the increase in entropy associated with this increase |iggN responses in three ways. First, we compared the infor-
resolution was used to encode information. As a result, theation in 8-ms words with 1-ms bins to that found in 1-ms
coding efficiency stayed relatively flat, decreasing onl§% \ords. For our example cell, the 3.2 bits per spike for 8-ms
from a bin size of 8 to 2 ms. Thus the position of spikes gfords with 1-ms bins was close to the 3.3 bits per spike for 1-
=2-ms resolution was significant for coding information. Imms words found for eight-frame sequences in Fig. 15, indicat-
proving the resolution by a factor of 2 from 2 to 1 ms yielde¢hg only a little redundancy and no synergy between the
an additional 3% increase in information to 3.2 bits per Splkﬁasponses of adjacent 1-ms bins. This near independence of
compared with an increase in entropy of 15%, suggesting thgfikes in 8-ms words was not simply due to Poisson firing
only 20% of the entropy change encoded information. Thugnce the distribution of the number of spikes within the 8-ms
while more information was encoded at this finer resolutioyindow showed a much larger probability for two spikes
(0.21) than would be expected from the square of the one spike

A probability (0.008). This result suggests that the cell was burst-
= i ing, although the bursts apparently did not lead to a large level
=2 30 of redundancy. This could happen because redundant patterns
@ 20 [ (such as bursts) might be used synergetically to code for the
a )| stimulus. It is important to point out that our measure looks at
g 10k —e— 8 mswords | tne ayeragel_evel of redundancy or synergy so that th_e com-
£ | ..o Infinite words, lower bnd 4 bination of different groups of redundant and synergetic spikes
00k | | | | N could appear independent at this ti_me scale. o
0 > 4 6 8 10 Second, to determme whether this !ack of significant rednn—
Bin size (ms) danc_y or synergy survives at longer time scales, we examined
the information in much longer words. Unfortunately, the
B direct method as applied to the repetitions of th&rame
5, 10FF T T T I H sequences could not be used to study response word lengths
2 o8l _ longer than~8 ms (for 8-frame stimuli) due to data insuffi-
-g 06 ciency. Instead, we estimated a lower bound on the information
% e in the entire response to the full M-sequence by using the two
o 04 — repeats of the full M-sequence (seetHobs). Assuming that
% 02 |- _ the stimulus was the only common drive for the two responses,
S oolt 1 1 | | H then the information between the responses to the two repeats

bounded from below the information either could carry about
o the stimulus. We compared this lower bound extracted in the
Bin size (ms) limit of infinitely long response words to the exact information
Fic. 16. Information transmission at different time resolutioAsthe in-  rates computed from eight-frame sequences and 8-ms re-
formation calculated by the direct entropy method is shown for 2 cases: saflonses (Fig. 16). The lower bound came reasonably close to

circles were computed from the multiple repeats of 8-frame stimuli, focusirtple information rates Computed from 8-ms words across all bin
on 8-ms spike words at 1-, 2-, 4-, and 8-ms bin sizes; open circles were

computed from the 2 full repeats of the M-sequence and represent only a lon€S considered. This implies that there is little redundancy
bound on the information from infinitely long words of spikes. Both measurédver times longer than 8 ms but leaves open the possibility of
showed an increase in information at finer time resolutions, and the lowgynergy (if the true infinite-word information were much
bound was close to the information observed with 8-ms wdsdshe corre- higher than our lower bound).

sponding coding efficiencies at the different time resolutions showed only a .
little change with bin size, indicating that the increased capacity gained atAS a final test of the rEdundanCy or synergy between

higher temporal resolution was being used by the neuron to code informat®Rikes, we compared the exact information transmitted by
about the stimulus. individual 1-ms bins to the lower bound on the information

0 2 4 6 8 10
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transmitted by infinitely long words of 1-ms bins. Figure 1TComparison to quasi-linear threshold models
plots these two measures for all cells and trials in the data in )
terms of both bits per spike and per second. Nearly all of theThe results reported here suggest that, while there was
trials fell close to the diagonal line where the informatioariation among the population, visual thalamic cells could
from single bins equaled the lower bound to the informatio®xhibit very precise responses that conveyed considerable
from infinitely many bins. To the right of this diagonal line,@mounts of information per spike on average. Responses of
Coding iS Synergetic: more information iS Conveyed on a\'}hese cells are often modeled as resqltlng from the ConVOI-Uuon
erage by combinations of spikes in 1-ms bins than by singhé the cell’s temporal kernel (shown in Fig. 1) with the stim-
1-ms bins. To the left of this diagonal line, coding ig!lus, followed by a nonlinear thresholding to generate a firing
redundant: less information is transmitted on average by tfade (SeevetHops). Is the degree of precision consistent with
words of bins than by the single 1-ms bin. Hence, the fathis picture?
that the trials aligned close to, but to the left of, the diagonal We first chose the threshold that gave a best match of the
suggested that there was at most a slight amount of redumedel PSTH to the data and assumed that spikes were gener-
dancy for real cells. Since the infinite word information is ated randomly according to an inhomogenous Poisson process
lower bound, we can only be certain that the true informavith the model PSTH (appropriately scaled to yield the same
tion lay to the right of the plotted data—that is, there wagean rate as the data). The best-matched model gave a broader
little or no redundancy and possibly some synergy. and more symmetric PSTH than was observed in the data,
suggesting that the precision of model spikes was significantly
worse. Extracting spike events as described above allowed us
to directly compare the precision of the model (FigB1L & the
. data (Fig. 18), in response to eight-frame sequences that had
4 - a bright to dark transition in the rightmost two frames. The

d model spike events were clearly more diffuse in time and did
not capture the details of the dependence of response onset
times on stimulus sequence. We next considered models in
g which spikes were generated from a Poisson process with an
21 - absolute refractory period. We considered this for the case in
-~ which the firing rate was a linear function (Fig. @8or a
g{ guadratic function (not shown) of the thresholded filter output.
. -] In each case, refractory period and threshold were chosen
together to optimally match the data (least mean-square error in
PSTH). The PSTH of the linear refractory model was slightly
narrower than that derived without a refractory period but
continued to be wider than the data and to not show the
temporal irregularity of the data. The model using a quadratic
function gave results similar to, but slightly poorer than, those
of the linear refractory model, so we do not consider it further.
A relative refractory period in addition to an absolute refrac-
tory period also yielded quantitatively similar results as the
case of an absolute refractory period alone.

The model's failure to capture the detailed structure of
response onset times is specifically due to an underestimation
of longer onset times, while shorter onset times were well
- reproduced by the model (Fig. AR This discrepancy can be
understood from an examination of the PSTH matrices (Fig.

18): it appears that when two or more consecutive dark frames
20 |- b4 - preceded the bright to dark transition, this lengthened first-
e spike times in the data; but this effect was not picked up by any
of the models. The models also reasonably reproduced the
op’ [ [ i | — mean spike counts observed in the data, but showed a tendency

0 20 40 60 80 to underestimate smaller mean counts and overestimate higher

Info,, long words (bits/sec) ones (Fig. 18). _ _ _

Fic. 17. Group data on the information in 1-ms bins plotted against the The POISSO.n. m.OdeI .dld a Poor JOb .Of reproduc!ng the ob-

lower bound for the information in infinitely long words of 1-ms bins. Theserved Va”ab'“ty n Splke timing or Splke count (F'g- D)

former was computed from the multiple repeats of 9-frame sequences, whilB€ inaccuracy in spike count precision is not surprising,
the latter was estimated from the two repeats of the full M sequéhagata because a Poisson model will always have a Fano factor of 1.

plotted as information per spik8: data plotted as information per second. InHowever. the model incorporating a refractory period came

both representations, the data fell close to the diagonal line where the 1-msﬁ_| . .. .
information equals the infinitely long word information. This suggests th lich closer to reproducing the precision of the data (Fig. 20,

there was at most a minimal amount of redundancy, and possibly synergyM; This model tended to _5"9ht|y overestimate smaller first-
the coding by successive spikes. spike-time standard deviations and Fano factors and to under-

>

Info, 1 ms words (bits/spk)

o’ 1 l 1
0 1 2 3 4 5
Info,, long words (bits/spk)

w

80 |-

60 [~

40

Info, 1 ms words (bits/sec)
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FIG. 18. Comparison of the data to three quasi-
linear models: spike event PSTH matrices. Parameters
used for each model gave the best match between the
data and models’ full PSTHA: data.B: linear gain,
Poisson spikesC: linear gain, Poisson with 3-ms
absolute refractory period. The stimulus was con-
volved with the temporal kernel of the real cell (Fig.
1), thresholded, and scaled to approximately match the
mean (and peak, for refractory model) firing rates of
the real cell. Threshold and, i€, refractory period
were selected to minimize the mean square error be-
tween the model PSTH and the data PSTH. The gen-
eral location of responses was roughly accurate, but
the widths of the responses and the asymmetry in the
peaks of the data were not fully reproduced by the
models. For both linear Poisson and linear refractory
models, the optimal threshold was 3.4 in units of
output of the convolution of the temporal kernel with

’ the stimulus, where the kernel was normalized as in
i Fig. 1 and bright and dark stimulus frames were rep-
1.8% rﬁj-- 0.01% 0.06% resented ast1. For comparison, the output of the

convolution had a peak value of 10.9 and an rms of 4.3
(and mean 0).

20 30 40 50 20 30 40 50 20 30 40 50

Time from f2If1 (ms)

estimate larger ones, showing less overall diversity of firgtrecision can be largely, but not entirely, accounted for by a
spike-time standard deviations and Fano factors than the dat@del in which firing rate is generated by filtering the stimulus
with the cell's temporal kernel and applying a threshold, fol-
lowed by spike generation as a Poisson process with an abso-
lute refractory period.

We have found that LGN neurons can show great precision
in their responses to M-sequence stimuli. For at least a subsedvious work on spike timing and count precision
of cells, spikes occur in discrete events triggered by mr
orF transition with spike rates close to zero at other times. TheOur work adds to a growing body of work finding high
time of the first spike in an event can be precise to 1-2 ms, ar$ponse precision and high information rates in the LGN in
this precision can be maintained even for unreliable evemtsponse to full-field noise stimuli. Keat et al. (2001), in work
(events that occur with low probability). The four framegontemporary with the present work, found 1-2 ms SD for the
before the transition frames influence the event timing, so thesae to the first spike in an event in response to full-field
frames must be specified to discern the cell's spike timingaussian white noise in close agreement with the present
precision. The number of spikes in an event can also shoesults for binary white noise. Reinagel and Reid (2000) re-
great precision, with Fano factor (ratio of variance to meapprted a particularly low width (SD) of 0.6 ms for one PSTH
approaching 0.3 (vs. a value of 1 expected for a Poisspraak in one cell’s response to a full-field “naturalistic” noise
process). The frames after a transition can “veto” or allow atimulus but did not more generally report on timing precision.
event so that two frames after the transition frames as well Beth of these papers and Kara et al. (2000) demonstrated
the four before must be specified to discern the cell's spilseib-Poissonian Fano factors in LGN responses to full-field
count precision. This precision of response allows cells to cail®aussian noise in agreement with the present findings. Com-
up to 3.5 bits per spike of information about the stimulus. Thgarable precision of spike timing and count in response to
coding efficiency of information transmitted in 1-ms bins cafull-field noise stimuli has been reported in the retina (Berry
be within a factor of two of the limit set by the spike train’sand Meister 1998; Berry et al. 1997; Kara et al. 2000; Keat et
entropy—a limit that is achieved when all of the cell's varial. 2001).
ability is used to code information. The coding efficiency Measures of response to other stimuli often do not show
remains relatively constant as the temporal resolution for speomilar precision. Thus Guido and Sherman (1998) measured
ifying spike times increases to at least 2 ms, and still motiee jitter in the time to first spike in responses to spots flashed
information is gained by increasing resolution to 1 ms, indin the center of the LGN cell receptive field and reported
cating that the timing of spikes at these resolutions carristandard deviations ranging from3 to 35 ms, depending on
information about the stimulus. By comparing the informatiothe mode of firing (burst vs. tonic). The greater variability seen
carried by 1-ms response words to that in 8-ms words anditothis case of a single flashed spot is akin to the spread of the
the lower bound on the information transmitted by infinitellPSTH seen when only a single frame is specified (Fig. 4) and
long response words, we find that there is at most onlynaay reflect the lack of specification of the cell’s initial state.
modest amount of redundancy in the coding by successiVkat is, when stimulated only by a blank screen (before stim-
spikes, and we find no evidence for synergy. Finally, thislus onset), spontaneous activities may lead a cell to wander

DISCUSSION
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>

40 F T I (e.g., Buracas et al. 1998; de Ruyter van Steveninck et al. 1997;
Mainen and Sejnowski 1995) and has stirred controversy (e.g.,
Egelhaaf and Warzecha 1999). Our findings add a focus on
stimulus history, showing that sufficient specification of a
- temporally varying stimulus is key to revealing neural preci-
sion. By extension, this emphasizes the importance of control
of neuronal state: noise may not be intrinsic to a neuron or a
piece of neural tissue but may instead simply represent vari-
ables that are not under the experimenter’s control. While a
dynamic stimulus may control neural firing and thus control a
given cell’'s state, lack of a stimulus (a blank screen) yields
spontaneous activities that are stochastic, being triggered at
least in part by spontaneous quantal events in photoreceptors
! L (Mastronarde 1989), and these in turn may lead a cell’s state to
25 30 35 40 wander in an uncontrolled way, presenting an uncontrolled
Data first-spike time (ms) initial condition at the moment of a flashed stimulus. A related
argument was made by Buracas et al. (1998), who showed that
whether or not a given stimulus evoked a spike in a cell of area

A

e Poisson
A Linear refract

35

30

Model first-spike time (ms)

25

w

Model spike count

Model std deviation (ms)

0 1 [ | in
0 1 2 3 4

Data spike count

FIG. 19. Comparison between the mean 1st-spike times and spike counts
for the data and the models, plotted for all 8-frame sequences witbrFan
transition between f4 and f3A: the 1st-spike times in the data were well
approximated by all of the models except that larger times were underesti-
mated. B: the spike counts were generally well predicted by the models,
although there was a small tendency to underestimate small counts and
overestimate high counts.

w

through a state space of comparable diversity to that created by
the set of binary stimulus sequences that could precede a single
frame in our experiments. Similar reasoning might also explain
why statically flashed, spatially nonuniform stimuli have pro-
duced Fano factors larger than 1 in several LGN studies
(Hartveit and Heggelund 1994; Levine et al. 1996; Sestokas
and Lehmkuhle 1988). Reich et al. (1997) reported a PSTH
standard deviation of 5 ms for one LGN cell in response to a
slowly drifting sine grating, but at least some of this jitter was
due to a slow drift in response phase across many trials, which
may have represented a slow change in cell state; responses 0.0 ! /AL AN
over a small set of adjacent trials showed considerably greater 0.0 0.5 1.0 1.5
precision. Data Fano factor

FIG. 20. Comparison between the spike timing SIB$ énd spike count
Fano factorsB) for the data and the models plotted for all 8-frame sequences

with an ofFF transition between f4 and f3. The Poisson model poorly matches

. : : precision of the data. The model with refractoriness does considerably
The idea that responses to temporally modulated stimuli Cgﬁter but shows some tendency to overestimate smaller first-spike times/Fano

show great precision, even while responses to more stafiGors and underestimate larger ones. The points with 0 SD and Fano factor
stimuli may show greater variability, has already a long histogfiowed only one non-0 spike response across the 128 trials.

Model Fano factor

Specifying neuronal state
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MT was strongly correlated to the local field potential at tha few (Brenner et al. 2000; Reinagel and Reid 2000) that have
given time and place. looked at the issue in terms of temporal coding in a single
It is interesting that, at least for our binary stimuli, specifineuron rather than population coding across multiple neurons.
cation of 8 frames (67 ms) seems adequate to specify the L&inagel and Reid (2000) found that LGN neurons can some-
state to sufficient precision to saturate spike timing and couffhes code more information on average in patterns of spikes
precision, while 9-10 frames (75-83 ms) saturate the infafan if those spikes were considered independently. The syn-
mation _coded by. spikes. These numbers are in roug_h agregyy they reported, however, was at most ori0%, and
ment w!th the width of the cell's temporal kernel (Fig. 1)many neurons were slightly redundamt{0%) or only very
which differs from zero over a span 6f65-70 ms. weakly synergetic. Our results are consistent with this in the
Previous work on neuronal information transmission sense that we _als_o _observe at most only mild redundancies in
in the LGN the coding by individual neurons. We cannot rule out syner-
gies, but to the degree that our lower bound closely approxi-
The information rates we have found—2-3.5 bits/spikenates the true information, the fact that none of our neurons
20-90 bits/s—are similar to those found by others in LGMy to the right of the independence line in Fig. 17 suggests that
who, like us, used “direct” methods (Eckhorn anthBlbl975; there are also no large synergies in the coding by individual
Reinagel and Reid 2000). These methods directly estimate tieurons.
information carried by the spike train about the stimulus,
without a requirement for explicit decoding, by assaying cer- i
tain stimulus and response probability distributions (EckhoModels of response generation

and Ppel 1974; Strong et al. 1998a,b). Indirect methods, suchWe have found that a simple model of response generation,

gﬁ tbheeinstl;nbulleutsor‘%ceocr:)sdt(ralﬁﬂgr:geghnosde(?ﬁl}( Se eerag'{héggnr,orvl ed on thresholding the output of the cell's temporal kernel
9 P ' P lied to the stimulus and imposing a refractory period, can

only a lower bound to the information rates: any mformaﬂoﬁ1 tch much but not all of the precision of response that we

that is successfully decoded was present, but there is no gy served. To achieve this result, it was critical that the cell’s

antee that all information .that. was present was SucceSSﬂ&%poral kernel be used and not simply the spike-triggered
decoded. Rates fqund using |nd|reg:t methods in LGN h%?/erage; use of the latter gave noticeably less precision in both
generally been quite low—only-2 bits/s (Dan et al. 1998; g{ning and spike count (not shown)

McClurkin et al. 1991; Reinagel et al. 1999)—suggesting th : : .

; : - : . d The discrepancies between the precision of the model and
much information present in the LGN spike trains was mlss?lqe observed data most likely arise from the linear filter model
by those methods.

o L . ther than the specifics of the spike generation mechanism.
Stimuli better matched to the receptive field may yield mors , ; .
information. Eckhorn and Rl (1975) found that spatially ‘lghe PSTH matrix generated by the model is somewhat wider

X e o nd considerably more regular than that of the data. Most
uniform stimuli yield lower LGN transmission rates (25_4@ rikingly, the model fails to show the lengthening of first-spike

bits/s at the best flash rate) than spots isolated at the recepfﬁ/e

. . . . ““times observed in the data when two or more consecutive dark
field center (60—80 bits/s) (Eckhorn andpgebd 1975). Their . - o
spot and full-field stimuli were only briefly flashed at SIOWframes preceded the bright/dark transition. This yields a less

L & L ~"jagged” left edge for the model PSTH compared with the data
periodic intervals £30 Hz). Full-field stimuli modulated ran PSTH. This jagged edge is dominated by a response’s first

e S iy o et Ranagl g RS, W e e b eacihess Mol
y : . L e error is unlikely to be in our model of spike generation an
(2000). The latter sees a range of information rates SImIIarr fractoriness but rather in the model of PSTH generation by

W.haF we have found even though their naturalistic stin_1u| inear filtering. This is also suggested by the fact that the

d!str!but!on conta|r_1ed r_nuch more entropy than our b'nat\émporal kernel and the spike-triggered average both give

distribution (924 bits/s in their distribution vs. 120 bits/s i milarly smooth leading edges (data not shown), so that it
t )

ours). That suggests that we may be seeing the limits of w %ems unlikely that a better filter would alter this result. It is

an LGN cell can code, at least to full-field stimuli. On the oth
hand, the results of Eckhorn andgeb (1975) suggest that bothﬁurther suggested by the results of Kara et al. (2000), who

: ; ; . found that they could successfully model the spike count
we and Reinagel and Reid (2000) might have seen even hi T o e .
information ragtes if we ha(d res)trictged flashes to the ceﬁvgnabmty of LGN cells by beginning with the observed PSTH

receptive field centers. rather than deriving the PSTH from a filter as we are doing)

L : . d adding both absolute~ ms) and relative {20 ms)
High information rates like those reported here have alf ; N -
been observed in a variety of other systems, including reti fractory periods extracted from the cell’s interspike interval
T

istribution.

visual cortex, and insect motion-detecting neurons (e.g., Be . :
et al. 1997; Buracas et al. 1998; de Ruyter van Steveninck et aIAccountlng for the observed PSTH presumably requires a

a7, such ot al 205, Svong o 158, e e o i o
g]retﬁ;?;rﬁi'g?];%?ggshere may not be a special property of L termine whether contrast-gain-control mechanisms (Shapley

and Victor 1978; Victor 1987) might be sufficient to reproduce
the response onsets and improve the agreement between the
model and data precision measures. Nonetheless, it should be
The issue of redundancy or synergy in the neural code hasted that the model as it stands is significantly nonlinear. The
been addressed in numerous papers, but we are aware of @pfmal threshold value (optimal in the sense of least mean-

Minimal redundancy
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square error in matching the data PSTH) was 80% of tBeenNner N, STRoNG SP, KOBERLE R, BIALEK W, AND DE RUYTER VAN

root-mean-square of the output of the filtering of the stimulusSTEVENINCK RR. Synergy in a neural codieural Computl2: 1531-1552,

by the temporal kernel (see legend to Fig. 18); that is, it w 2000 : o .
L - L . ?URACAS GT anD ALBRIGHT TD. Gauging sensory representations in the brain.

necessary to set a significant fraction of positive filter outputSt ands Neurosce?2: 303-309, 1999

to zero. The optimal absolute refractory period was 3 ms, l0Bgracas GT, Zabor AM, DEWEESE MR, AND ALBRIGHT TD. Efficient dis-

compared with probable biophysical absolute refractory peri-crimination of temporal patterns by motion-sensitive neurons in primate

ods of~1 ms. (When both an absolute and a relative refractoryvisual cortex.Neuron20: 959-969, 1998.

period were used’ the Optimum was Sim“ar, 2.5 ms absolleN Y, AI_'ONSOJM, USREYWM, A.ND Reip RC. Coding of visual informatiqn

plus 0.5 ms relative refractory period.) by precisely correlated spikes in the lateral geniculate nuchaisNeurosci

. . 1: 501-507, 1998.
An alternatlvg app'roach to r.nodelllr)g the neural FeSPONSESE vTer van Sreveninck RR, LEWEN GD, SrroNG SP, KOBERLE R, AND
observed here is to dispense with a firing rate model altogetheg,, ex w. Reproducibility and variability in neural spike trairScience
and instead directly model the spike generation process. Berry7ss: 1805-1808, 1997.
et al. (1997) found that responses of retinal neurons to full-fieidkHorn R anp POPEL B. Rigorous and extended application of information
noise stimuli consisted of brief response events surrounded bipeory to the afferent visual system of the cat. I. Basic concétsernetik
substantial periods of zero spike rate, similar to the cases in ouf6: 191-200, 1974. o .
experiment in which most spikes could be accounted for @KHORN R AND POPEL B. Rigorous and extended application of information

R e . theory to the afferent visual system of the cat. Il. Experimental t&itd.
response events locked ¢o or orr stimulus transitions. This Cybe)r/n17: 7-17 1975. Y P

has led the same group more recently (Keat et al. 2_001) HEELHAAF M AND WaRzZECHA AK. Encoding of motion in real time by the fly
suggest that a rate description of such responses, in whictisual systemCurr Opin Neurobiol9: 454—460, 1999.
spike probability is zero for extended periods interrupted K§rAY C, MALDONADO P, Witson M, AND McNAuGHTON B. Tetrodes markedly

brief events may be inadequate. Instead they proposed prémprove the reliability and yield of multiple single-unit isolation from
. . ; multi-unit recordings in cat striate cortexNeur Method$3: 43-54, 1995.
dicting the spikes themselves rather than a spike rate by é%rlT;)o W AnD SHERMAN SM. Response latencies of cells in the cat’s lateral

garding the OUtPUt of a_CeWS linearfilter applied to the StlmUIL_JS geniculate nucleus are less variable during burst than tonic fiNfig.

as a voltage-like variable rather than a rate and countingyeyrosciis: 231-237, 1998.

upward-going threshold crossings of this voltage as spik@rtver E anp HecceLUND P. Response variability of single cells in the
times. Parameterizing the filter, adding a spike-induced “hy-dorsal lateral geniculate nucleus of the cat. Comparison with retinal input
perpolarization” to represent refractoriness, and adding approa”d effect of brain stem stimulatiod.Neurophysiol72: 1278-1289, 1994.
priate noise yielded a 20-parameter model (15 paramet5r°§“ P, REINAGEL P, AnD ReiD RC. Low response variability in simulta-

N . al | inal, thalami ical 27: 635-
describing the filter and 5 additional parameters). They showe@iguzgogcordec’ retinal, thalamic, and cortical neurbfeuron27: 635

that such a model, fit individually to each cell by optimizing &ear 3, RemaceL P, Rep RC, anp MEISTER M. Predicting every spike: a
cost function incorporating precision measures, could do anodel for the responses of visual neuroNeuron30: 803—817, 2001.
good job of replicating the cell's spiking events and theirevine MW, CLetanD BG, MUKHERIEE P, AND KapLan E. Tailoring of
statistics for both retinal and LGN cells in response to Gaussianariability in the lateral geniculate nucleus of the cBfol Cybern 75:
noise stimuli. We have no reason to doubt that the same modef&t9-227. 1996.

. . . . U RC, TzoNEV S, REBRIK S, KURGANSKY A, AND MILLER KD. Spike precision
\é\;ﬁgzgdmeell'edescrlbe the responses to bmary noise Stlml&lﬁmd information in cat visual thalamuSoc Neurosci Abst26: 1196, 2000.

MAINEN ZF AND Seanowski TJ. Reliability of spike timing in neocortical

neurons.Science268: 1503-1506, 1995.
Conclusion MasTRONARDEDN. Correlated firing of retinal ganglion cell§rends Neurosci

o _ 12: 75-80, 1989.

LGN cells can show remarkable precision in their reSponSRScLurkin JW, Gawne TJ, RcHMonD BJ, CPTICAN LM, AND RoBINSON DL.
and code information at high rates and with high coding Lateral geniculate neurons in behaving primates. |. Responses to two-
efficiency. Revealing this precision requires sufficient specifi-dimensional stimuliJ Neurophysiob6: 777-793, 1991.
cation of the stimulus history. This points to the possibility thafE'STER M anD Berry MJ. The neural code of the retindeuron 22:
measurements of neuronal precision may be limited as m%E35—450. 1999.

e

. ) . ssWH, TeEukoLsky SA, VETTERLING WT, AND FLANNERY BP. Numerical
by the degree to which the experimenter controls the variab ﬁecipes in g2nd ed.). Cambridge, UK: Cambridge Univ. Press, 1992.

relevant to a cell's response as by the intrinsic precision @fich DS, MechLer F, Furpura KP, AND VicTor JD. Interspike intervals,

neural processing. receptive fields, and information encoding in primary visual corfedeu-
rosci 20: 1964-1974, 2000.
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